Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Short term cloud nowcasting for a solar power plant based on irradiance historical Data

dc.contributor.authorCaballero Roldán, Rafael
dc.contributor.authorZarzalejo Tirado, Luis Fernando
dc.contributor.authorOtero Martín, Álvaro
dc.contributor.authorPiñuel Moreno, Luis
dc.contributor.authorWilbert, Stefan
dc.date.accessioned2023-06-17T13:18:52Z
dc.date.available2023-06-17T13:18:52Z
dc.date.issued2018-12
dc.description© 2018 Universidad Nacional de La PLata This work has been partially supported by the Spanish MINECO project TIN2015-66471, and by the Santander-UCM project PR26/16-21B-1.
dc.description.abstractThis work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/50740
dc.identifier.doi10.24215/16666038.18.e21
dc.identifier.issn1666-6046
dc.identifier.officialurlhttp://dx.doi.org/10.24215/16666038.18.e21
dc.identifier.relatedurlhttp://journal.info.unlp.edu.ar
dc.identifier.urihttps://hdl.handle.net/20.500.14352/13009
dc.issue.number3
dc.journal.titleJournal of computer science & technology
dc.language.isoeng
dc.page.final192
dc.page.initial186
dc.publisherUniversidad Nacional de La Plata
dc.relation.projectIDTIN2015-66471
dc.relation.projectIDPR26/16-21B-1
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.cdu004.8
dc.subject.keywordTime-series
dc.subject.keywordRadiation
dc.subject.keywordCloud nowcasting
dc.subject.keywordGHI
dc.subject.keywordLSTM
dc.subject.keywordSupervised machine learning
dc.subject.keywordComputer Science
dc.subject.keywordArtificial Intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleShort term cloud nowcasting for a solar power plant based on irradiance historical Data
dc.typejournal article
dc.volume.number18
dspace.entity.typePublication
relation.isAuthorOfPublicationd17b0355-2695-449e-b06e-a34f4e27f120
relation.isAuthorOfPublication2ce782af-0e05-45eb-b58a-d2efffec6785
relation.isAuthorOfPublication.latestForDiscoveryd17b0355-2695-449e-b06e-a34f4e27f120

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Piñuel 01 libre+CC(by-sa).pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format

Collections