Short term cloud nowcasting for a solar power plant based on irradiance historical Data
dc.contributor.author | Caballero Roldán, Rafael | |
dc.contributor.author | Zarzalejo Tirado, Luis Fernando | |
dc.contributor.author | Otero Martín, Álvaro | |
dc.contributor.author | Piñuel Moreno, Luis | |
dc.contributor.author | Wilbert, Stefan | |
dc.date.accessioned | 2023-06-17T13:18:52Z | |
dc.date.available | 2023-06-17T13:18:52Z | |
dc.date.issued | 2018-12 | |
dc.description | © 2018 Universidad Nacional de La PLata This work has been partially supported by the Spanish MINECO project TIN2015-66471, and by the Santander-UCM project PR26/16-21B-1. | |
dc.description.abstract | This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series. | |
dc.description.department | Sección Deptal. de Arquitectura de Computadores y Automática (Físicas) | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO) | |
dc.description.sponsorship | Universidad Complutense de Madrid/Banco de Santander | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/50740 | |
dc.identifier.doi | 10.24215/16666038.18.e21 | |
dc.identifier.issn | 1666-6046 | |
dc.identifier.officialurl | http://dx.doi.org/10.24215/16666038.18.e21 | |
dc.identifier.relatedurl | http://journal.info.unlp.edu.ar | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/13009 | |
dc.issue.number | 3 | |
dc.journal.title | Journal of computer science & technology | |
dc.language.iso | eng | |
dc.page.final | 192 | |
dc.page.initial | 186 | |
dc.publisher | Universidad Nacional de La Plata | |
dc.relation.projectID | TIN2015-66471 | |
dc.relation.projectID | PR26/16-21B-1 | |
dc.rights | Atribución-NoComercial 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/3.0/es/ | |
dc.subject.cdu | 004.8 | |
dc.subject.keyword | Time-series | |
dc.subject.keyword | Radiation | |
dc.subject.keyword | Cloud nowcasting | |
dc.subject.keyword | GHI | |
dc.subject.keyword | LSTM | |
dc.subject.keyword | Supervised machine learning | |
dc.subject.keyword | Computer Science | |
dc.subject.keyword | Artificial Intelligence | |
dc.subject.ucm | Inteligencia artificial (Informática) | |
dc.subject.unesco | 1203.04 Inteligencia Artificial | |
dc.title | Short term cloud nowcasting for a solar power plant based on irradiance historical Data | |
dc.type | journal article | |
dc.volume.number | 18 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | d17b0355-2695-449e-b06e-a34f4e27f120 | |
relation.isAuthorOfPublication | 2ce782af-0e05-45eb-b58a-d2efffec6785 | |
relation.isAuthorOfPublication.latestForDiscovery | d17b0355-2695-449e-b06e-a34f4e27f120 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Piñuel 01 libre+CC(by-sa).pdf
- Size:
- 1.06 MB
- Format:
- Adobe Portable Document Format