All three-manifolds are pullbacks of a branched covering S3 to S3
dc.contributor.author | Montesinos Amilibia, José María | |
dc.contributor.author | Hilden, Hugh Michael | |
dc.contributor.author | Lozano Imízcoz, María Teresa | |
dc.date.accessioned | 2023-06-21T02:02:48Z | |
dc.date.available | 2023-06-21T02:02:48Z | |
dc.date.issued | 1983-10 | |
dc.description.abstract | This paper establishes two new ways of representing all closed orientable 3-manifolds. (1) Let F,N be a pair of disjoint bounded orientable surfaces in the 3-sphere S3. Let (Sk,Fk,Nk), k=1,2,3, be 3 copies of the triplet (S,F,N). Split S1 along F1; S2 along F2 and N2; S3 along N3. Glue F1 to F2, N2 to N3 to obtain a closed orientable 3-manifold. Then every closed orientable 3-manifold can be obtained in this way. (2) Let q:S→S be any 3-fold irregular branched covering of the 3-sphere S over itself. Let M be any 3-manifold. Then there is a 3-fold irregular branched covering p:M→S and a smooth map f:S→S such that f is transverse to the branch set of q and p is the pullback of q and f. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comisión Asesora del ME | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17200 | |
dc.identifier.doi | 10.2307/1999564 | |
dc.identifier.issn | 1088-6850 | |
dc.identifier.officialurl | http://www.jstor.org/stable/1999564 | |
dc.identifier.relatedurl | http://www.jstor.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64702 | |
dc.issue.number | 2 | |
dc.journal.title | Transactions of the American Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 735 | |
dc.page.initial | 729 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.16 | |
dc.subject.keyword | closed orientable 3-manifold | |
dc.subject.keyword | branched covering | |
dc.subject.keyword | link | |
dc.subject.keyword | knot | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | All three-manifolds are pullbacks of a branched covering S3 to S3 | |
dc.type | journal article | |
dc.volume.number | 279 | |
dcterms.references | J. S. Birman and J. Powell, Special representation for 3-manifolds, Geometric Topology (J. C. Cantrell, ed.), Academic Press, 1979. H. M. Hilden, Embeddings and branched covering spaces for three and four dimensional manifolds, Pacific J. Math. 78 (1978), 139-147. H. M. Hilden and J. M. Montesinos, A method of constructing 3-manifolds and its application to the computation of the μ-invariant, Proc. Sympos. Pure Math., vol. 32, Part 2, Amer. Math. Soc., Providence, R.I., 1978, pp. 61-69. R. Kirby, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978, pp. 273-312. J. M. Montesinos, A note on 3-fold branched coverings of S3, Math. Proc. Cambridge Philos. Soc. 88 (1980), 321-325. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1