On the singular sector of the Hermitian random matrix model in the large N limit

dc.contributor.authorKonopelchenko, Boris
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T04:00:18Z
dc.date.available2023-06-20T04:00:18Z
dc.date.issued2011-01-31
dc.description©2010 Elsevier B.V. All rights reserved. The authors wish to thank the Spanish Ministerio de Educación y Ciencia (research project FIS2008-00200/FIS) for its finantial support. B. K. is thankful to the Departamento de Física Teórica II for the kind hospitality
dc.description.abstractThe one-cut case of the Hermitian random matrix model in the large N limit is considered. Its singular sector in the space of coupling constants is analyzed from the point of view of the hodograph equations of the underlying dispersionless Toda hierarchy. A deep connection with the singular sector of the hodograph equations of the 1-layer Benney (classical long wave equation) hierarchy is stablished. This property is a consequence of the fact that the hodograph equations for both hierarchies describe the critical points of solutions of Euler- Poisson-Darboux equations.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish Ministerio de Educación y Ciencia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34203
dc.identifier.doi10.1016/j.physleta.2010.12.055
dc.identifier.issn0375-9601
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.physleta.2010.12.055
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/1005.4773
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44792
dc.issue.number5
dc.journal.titlePhysics letters A
dc.language.isoeng
dc.page.final872
dc.page.initial867
dc.publisherElsevier
dc.relation.projectIDFIS2008-00200/FIS
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordIntegrable systems
dc.subject.keywordHodograph equations
dc.subject.keywordRandom matrix models
dc.subject.keywordEuler-Poisson-Darboux equation
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleOn the singular sector of the Hermitian random matrix model in the large N limit
dc.typejournal article
dc.volume.number375
dcterms.references[1] P. Di Francesco, P. Ginsparg and Z. Zinn-Justin, Phys. Rept. 254,1 (1995) [2] P. Deift, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach, Courant Lecture Notes in Mathematics 3, Amer. Math. Soc. Providence, RI, (1999) [3] L. Martínez Alonso and E. Medina, J. Phys. A: Math. Gen. 40, 14223 (2007) [4] L. Martínez Alonso and E. Medina, J. Phys. A: Math. Gen. 41, 335202 (2008) [5] B. A. Dubrovin and S. P. Novikov, Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russian Math. Surveys 44, 35 (1989) [6] C. P. Boyer and J. D. Finley, J. Math. Phys., 23, 1126 (1982) [7] M. Mineev- Weinstein, P. Wiegman and A. Zabrodin, Phys. Rev. Lett., 84, 5106 (2000) [8] P. W. Wiegman and P. B. Zabrodin, Comm. Math. Phys., 213, 523 (2000) [9] I. Krichever, M.Mineev- Weinstein, P. Wiegman and A. Zabrodin, Physica D, 198, 1 (2004) [10] D. Y. Benney, Stud. Appl. Math. 52 45-50 (1973). [11] V. E. Zakharov, Func. Anal. Appl. 14, 89 (1980). [12] B. Dubrovin, T. Grava and C. Klein, J. Nonlinear Science 19 57 (2009). [13] B.G. Konopelchenko, L. Martínez Alonso and E. Medina. Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation. arXiv:1003.2892. To appear in J. Phys. A. [14] Y. Kodama and B.G. Konopelchenko, J. Phys. A: Math. Gen. 35, L489-L500 (2002). [15] G. Darboux, Lecons sur la theorie general des surfaces II , Gauthier Villars (1915). [16] V. R. Kudashev and S. E. Sharapov, Phys. Lett. A 154,445 (1991); Theor. Math. Phys. 87, 40 (1991). [17] F. R. Tian, Duke Math. J. 74 203 (1994). [18] M. V. Pavlov, Hamiltonian formulation of electroforesis equations. Integrable hydrodynamic equations Preprint, Landau Inst. Theor. Phys., Chernogolovsca (1987). [19] B.G. Konopelchenko and L. Mart´ınez Alonso, J. Phys. A: Math. Gen. 37, 7859 (2004) [20] I. M. Krichever, Commun. Pure. Appl. Math. 47 437 (1994)
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1005.4773.pdf
Size:
124.43 KB
Format:
Adobe Portable Document Format

Collections