Fibred knots and disks with clasps.
Loading...
Download
Full text at PDC
Publication date
1986
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citation
Abstract
It is known that every closed, orientable 3-manifold contains a fi-bered knot—a simple closed curve whose complement is a surface bundle over S1. For K such a fibered knot in a rational homology 3-sphere M it is shown that for any compact submanifold X of M containing K as a null-homologous subset, each component of ∂X is compressible in M−K. If K is a doubled knot (bounds a disk with one clasp) then it follows that K is a double of the trivial knot. More generally, it follows that the genus of X (minimum number of one-handles) is less than the genus of M.