Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Exceptional Legendre polynomials and confluent Darboux transformations

dc.contributor.authorGarcia Ferrero, María Ángeles
dc.contributor.authorGómez-Ullate Oteiza, David
dc.contributor.authorMilson, Robert
dc.date.accessioned2023-06-17T09:01:47Z
dc.date.available2023-06-17T09:01:47Z
dc.date.issued2021
dc.description© 2021 Natl Acad Sci Ukraine, Inst Math. MAGF would like to thank the Max-Planck-Institute for Mathematics in the Sciences, Leipzig (Germany), where some of her work took place. DGU acknowledges support from the Spanish MICINN under grants PGC2018-096504-B-C33 and RTI2018-100754-B-I00 and the European Union under the 2014-2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia (project FEDER-UCA18-108393).
dc.description.abstractExceptional orthogonal polynomials are families of orthogonal polynomials that arise as solutions of Sturm-Liouville eigenvalue problems. They generalize the classical families of Hermite, Laguerre, and Jacobi polynomials by allowing for polynomial sequences that miss a finite number of "exceptional" degrees. In this paper we introduce a new construction of multi-parameter exceptional Legendre polynomials by considering the isospectral deformation of the classical Legendre operator. Using confluent Darboux transformations and a technique from inverse scattering theory, we obtain a fully explicit description of the operators and polynomials in question. The main novelty of the paper is the novel construction that allows for exceptional polynomial families with an arbitrary number of real parameters.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipJunta de Andalucia/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/64748
dc.identifier.doi10.3842/SIGMA.2021.016
dc.identifier.issn1815-0659
dc.identifier.officialurlhttp://dx.doi.org/10.3842/SIGMA.2021.016
dc.identifier.relatedurlhttps://www.emis.de/journals/SIGMA
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7974
dc.journal.titleSymmetry integrability and geometry: methods and applications (SIGMA)
dc.language.isoeng
dc.publisherNatl Acad Sci Ukraine, Inst Math
dc.relation.projectID(PGC2018-096504-B-C33; RTI2018-100754-B-I00)
dc.relation.projectIDFEDER-UCA18-108393
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordPotentials
dc.subject.keywordHermite.
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleExceptional Legendre polynomials and confluent Darboux transformations
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication17de85e3-ef03-4749-b8f1-4b1f7673f31c
relation.isAuthorOfPublication.latestForDiscovery17de85e3-ef03-4749-b8f1-4b1f7673f31c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gomez-ullate45 libre.pdf
Size:
542.24 KB
Format:
Adobe Portable Document Format

Collections