Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Reaching a Consensus on Access Detection by a Decision System

dc.contributor.authorSantos Peñas, Matilde
dc.contributor.authorGuevara Maldonado, César Byron
dc.contributor.authorLópez López, María Victoria
dc.contributor.authorMartín, José Antonio
dc.date.accessioned2023-06-19T14:56:20Z
dc.date.available2023-06-19T14:56:20Z
dc.date.issued2014-12-02
dc.description.abstractClassification techniques based on Artificial Intelligence are computational tools that have been applied to detection of intrusions (IDS) with encouraging results. They are able to solve problems related to information security in an efficient way. The intrusion detection implies the use of huge amount of information. For this reason heuristic methodologies have been proposed. In this paper, decision trees, Naive Bayes, and supervised classifying systems UCS, are combined to improve the performance of a classifier. In order to validate the system, a scenario based on real data of the NSL-KDD99 dataset is used.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinistry of Higher Education, Science, Technology and Innovation (SENESCYT) of the Government of the Republic of Ecuador
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/33210
dc.identifier.doi10.1109/PIC.2014.6972308
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34872
dc.issue.number697230
dc.journal.titlePIC 2014 - Proceedings of 2014 IEEE International Conference on Progress in Informatics and Computing
dc.language.isoeng
dc.page.final122
dc.page.initial119
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordArtificial intelligence
dc.subject.keywordHeuristic methodologies
dc.subject.keywordintrusiondDetection (IDS)
dc.subject.keywordDecision trees
dc.subject.keywordSupervised dlassifying system UCS
dc.subject.keywordNaive Bayes
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleReaching a Consensus on Access Detection by a Decision System
dc.typejournal article
dcterms.references[1] H. Debar and J. Viinikka, "Introduction to Intrusion Detection and Security Information Management", in Foundations of Security Analysis and Design III FOSAD 2005. LNCS, 3655, pp. 207-236. Springer (2005). [2] R.G. Bace and P. Mell. "Intrusion detection systems. Gaithersburg", in U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001. [3] M. Esposito , C. Mazzariello, F. Oliviero, S.P. Romano, and C. Sansone “Evaluating pattern recognition techniques in intrusion detection systems.” in Proceedings of the 5th Interna-tional Workshop on Pattern Recognition in Information Systems (PRIS) 2005, May 2005, pp. 144 - 153. [4] W. Lee , S.J. Stolfo, and K. Mok, "Data Mining in work flow environments: Experiments in intrusion detection." in Proceedings of the 1999 Conference on Knowledge Dis-covery and Data Mining. [5] V. Jaiganesh, S. Mangayarkarasi and P. Sumathi, "Intrusion Detection Systems: A Survey and Analysis of Classification Techniques." vol, 2, 1629-1635. [6] A. Mitrokotsa and C. Dimitrakakis, "Intrusion detection in MANET using classification algorithms: The effects of cost and model selection.", Ad Hoc Networks, 11(1), 226-237. [7] C. Guevara, M. Santos, and J.A. Martín-H, "Identification of Computer Information System Intruders by Decision Trees and Artificial Neural Networks" in International Conference on Intelligent Systems and Knowledge Engineering ISKE 2013. [8] W. Wang, X. Zhang, S. Gombault, and S.J. Knapskog, "Attribute Normalization in Network Intrusion Detection", IEEE, 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks. 978-0-7695-3908-9/09, pp-448-453. [9] S. Haykin, "Neural networks: a comprehensive foundation.", New York: Macmillan, 2004. [10] J.R. Quinlan, "Induction of Decision Trees. Machine Learning 1", (1986) 81-106. [11] C. X. Ling, Q. Yang, J. Wang, and S. Zhang, "Decision trees with minimal costs." in Proceedings of the twenty-first international conference on Machine learning, (2004, July), (p. 69). ACM. [12] S. Abe, "Support vector machines for pattern classification.", London: Springer, 2005. [13] E. Bernadó-Mansilla and J.M. Garrell., "Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks." in Evolutionary Computation 11:3 (2003) 209-238. [14] P. Domingos and M. Pazzani, "On the optimality of the simple Bayesian classifier under zero-one loss." in Machine Learning 29 (1997) 103-137. [15] "NSL-KDD data set for network-based intrusion detection systems.” Available: http://nsl.cs.unb.ca/NSL-KDD/, March 2014. [16] A.W. Moore and M.S. Lee, "Efficient Algorithms for Minimizing Cross Validation Error.", in Machine Learning: Proceedings of the Eleventh International Conference, Morgan Kaufmann, 1993. [17] M. Santos , J. A. Martín H, V. López and G. Botella, "Dyna-H: A heuristic planning reinforcement learning algorithm applied to roleplaying game strategy decision systems", Knowledge-Based Systems (2012), 32, 28-36.
dspace.entity.typePublication
relation.isAuthorOfPublication99cac82a-8d31-45a5-bb8d-8248a4d6fe7f
relation.isAuthorOfPublicationf806566f-1e28-4933-b145-c9531c1ded1c
relation.isAuthorOfPublication.latestForDiscovery99cac82a-8d31-45a5-bb8d-8248a4d6fe7f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
322_PIC 2014_revised.pdf
Size:
67.83 KB
Format:
Adobe Portable Document Format

Collections