Electron spectrum of magnetic interface structures based on narrow-gap semiconductors

dc.contributor.authorMalkova, N.
dc.contributor.authorGómez, I.
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.date.accessioned2023-06-20T19:10:41Z
dc.date.available2023-06-20T19:10:41Z
dc.date.issued2001-01-15
dc.description© 2001 The American Physical Society
dc.description.abstractIn this work we deal with magnetic junction structures in which a homogeneous narrow-gap semiconductor is subjected to an inhomogeneous magnetic field. The aim of the paper is to elucidate magnetic field effects on the electron energy spectrum of narrow-gap semiconductors in inhomogeneous magnetic fields. The two-band Dirac model is used as a model Hamiltonian. Spectra and wave functions for the magnetic junction are obtained. Wave functions for the lowest quasi Landau levels rue strongly localized near the interface plane showing the characteristic properties of snake orbits. The spin properties of the quasi Landau levels an studied.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27532
dc.identifier.doi10.1103/PhysRevB.63.035317
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.63.035317
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59353
dc.issue.number3
dc.journal.titlePhysical Review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordField
dc.subject.keywordTransport
dc.subject.keywordDevices
dc.subject.keywordStates
dc.subject.keywordOrbits
dc.subject.ucmFísica de materiales
dc.titleElectron spectrum of magnetic interface structures based on narrow-gap semiconductors
dc.typejournal article
dc.volume.number63
dcterms.references1. P.D. Ye, D. Weiss, R.R. Gerhardts, M. Seeger, K. von Klitzing, K. Eberl, and H. Nickel, Phys. Rev. Lett. 74, 3013 (1995). 2. A. Matulis, F.M. Peeters, and P. Vasilopoulos, Phys. Rev Lett. 72, 1518 (1992). 3. V.M. Ramaglia, A. Tiagliacozzo, F. Ventriglia, and G.P. Zucchelli, Phys. Rev. B 43, 2201 (1991). 4. F.M. Peeters and P. Vasilopoulos, Phys. Rev. B 47, 1466 (1993). 5. C.W.J. Beenakker, Phys. Rev. Lett. 62, 2020 (1989). 6. A. Nogaret, S. Carlton, B.L. Gallagher, P.C. Main, M. Henini, R. Wirtz, R. Newbury, M.A. Howson, and S.P. Beaumont, Phys. Rev. B 55, R16 037 (1997). 7. I.S. Ibrahim and F.M. Peeters, Phys. Rev. B 52, 17 321 (1995). 8. F. Evers, A.D. Mirlin, D.G. Polyakov, and P. Wolfle, Phys. Rev. B 60, 8951 (1999). 9. D.B. Chklovskii and P.A. Lee, Phys. Rev. B 48, 18 060 (1993). 10. D.B. Chklovskii, Phys. Rev. B 51, 9895 (1995). 11. J.E. Mu¨ller, Phys. Rev. Lett. 68, 385 (1992). 12. S. Datta, Electron Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995). 13. F.M. Peeters, J. Reijniers, S.M. Badalian, and P. Vasilopoulos, Microelectron. Eng. 47, 405 (1999). 14. D. Agassi and V. Korenman, Phys. Rev. B 37, 10 095 (1988). 15. D. Agassi, Phys. Rev. B 49, 10 393 (1994).
dspace.entity.typePublication
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame80libre.pdf
Size:
90.03 KB
Format:
Adobe Portable Document Format

Collections