Topology of definable abelian groups in o-minimal structures
dc.contributor.author | Baro González, Elías | |
dc.contributor.author | Berarducci, Alessandro | |
dc.date.accessioned | 2023-06-20T00:08:09Z | |
dc.date.available | 2023-06-20T00:08:09Z | |
dc.date.issued | 2011-11-17 | |
dc.description.abstract | In this note, we prove that every definably connected, definably compact abelian definable group G in an o-minimal expansion of a real closed field with dim(G)≠4 is definably homeomorphic to a torus of the same dimension. Moreover, in the semialgebraic case the result holds for all dimensions. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MTM | |
dc.description.sponsorship | UCM 910444 | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/14565 | |
dc.identifier.doi | 10.1112/blms/bdr108 | |
dc.identifier.issn | 1469-2120 | |
dc.identifier.officialurl | http://blms.oxfordjournals.org/content/current | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/42054 | |
dc.journal.title | Bulletin of the London Mathematical Society | |
dc.language.iso | eng | |
dc.page.final | 7 | |
dc.page.initial | 1 | |
dc.publisher | London Mathematical Society | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MTM2008-00272/ES/GEOMETRIA REAL/ | |
dc.relation.projectID | ||
dc.rights.accessRights | open access | |
dc.subject.cdu | 510.67 | |
dc.subject.keyword | o-Minimality | |
dc.subject.keyword | Definable Groups | |
dc.subject.ucm | Lógica simbólica y matemática (Matemáticas) | |
dc.subject.unesco | 1102.14 Lógica Simbólica | |
dc.title | Topology of definable abelian groups in o-minimal structures | |
dc.type | journal article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8695b08a-762f-4ef9-ad24-b6fe687ab7cd | |
relation.isAuthorOfPublication.latestForDiscovery | 8695b08a-762f-4ef9-ad24-b6fe687ab7cd |
Download
Original bundle
1 - 1 of 1