Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Coarse graining methods for spin net and spin foam models

Loading...
Thumbnail Image

Full text at PDC

Publication date

2012

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IOP Publishing
Citations
Google Scholar

Citation

Dittrich, Bianca, et al. «Coarse graining methods for spin net and spin foam models». New Journal of Physics, vol. 14, n.o 3, marzo de 2012, p. 035008. DOI.org (Crossref), https://doi.org/10.1088/1367-2630/14/3/035008.

Abstract

We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large-scale analysis by numerical and computational methods. In particular, we apply the Migdal–Kadanoff and tensor network renormalization (TNR) schemes to spin net and spin foam models based on finite Abelian groups and introduce 'cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the TNR analysis, a new Gauß constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish the equivalence of certain models.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections