Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-20T10:43:55Z
dc.date.available2023-06-20T10:43:55Z
dc.date.issued2008-11-01
dc.description© 2008 American Institute of Physics. The study was partially supported by the local government (Junta de Castilla y León) under Grant No. VA018A06, and by the Spanish TEC2008 under Grant No. 06698-C02-02 and TEC2007 under Grant No. 63318. The authors acknowledge C. A. I. de Técnicas Físicas, C. A. I. de Espectroscopía y Espectrometría, and C. A. I. de Microscopía y Citometría of the Universidad Complutense de Madrid for technical support.
dc.description.abstractAl/HfO(2)/SiN(x):H/n-Si metal-insulator-semiconductor capacitors have been studied by electrical characterization. Films of silicon nitride were directly grown on n-type silicon substrates by electron cyclotron resonance assisted chemical vapor deposition. Silicon nitride thickness was varied from 3 to 6.6 nm. Afterwards, 12 nm thick hafnium oxide films were deposited by the high-pressure sputtering approach. Interface quality was determined by using current-voltage, capacitance-voltage, deep-level transient spectroscopy (DLTS), conductance transients, and flatband voltage transient techniques. Leakage currents followed the Poole-Frenkel emission model in all cases. According to the simultaneous measurement of the high and low frequency capacitance voltage curves, the interface trap density obtained for all the samples is in the 10(11) cm(-2) eV(-1) range. However, a significant increase in this density of about two orders of magnitude was obtained by DLTS for the thinnest silicon nitride interfacial layers. In this work we probe that this increase is an artifact that must be attributed to traps existing at the HfO(2)/SiN(x) : H intralayer interface. These traps are more easily charged or discharged as this interface comes near to the substrate, that is, as thinner the SiN(x) : H interface layer is. The trapping/detrapping mechanism increases the capacitance transient and, in consequence, the DLTS measurements have contributions not only from the insulator/substrate interface but also from the HfO(2)/SiN(x) : H intralayer interface.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipJunta de Castilla y León
dc.description.sponsorshipSpanish TEC2008
dc.description.sponsorshipSpanish TEC2007
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25944
dc.identifier.doi10.1063/1.3013441
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3013441
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51098
dc.issue.number9
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDVA018A06
dc.relation.projectID06698-C02-02
dc.relation.projectID63318
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordKappa Gate Dielectrics
dc.subject.keywordOxide Thin-Films
dc.subject.keywordCrystallization
dc.subject.keywordTransistors
dc.subject.keywordTransients
dc.subject.keywordDeposition
dc.subject.keywordHydrogen
dc.subject.keywordModel.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleInfluence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon
dc.typejournal article
dc.volume.number104
dcterms.references1) J.-P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, and J. W. Seo, J. Appl. Phys. 100, 051610 (2006). 2) J. Robertson, Rep. Prog. Phys. 69, 327 (2006). 3) M. Houssa, L. Partisano, L.-Å. Ragnarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, Mater. Sci. Eng., R. 51, 37 (2006). 4) R. Choi, S. C. Song, C. D. Young, G. Bersuker, and B. H. Lee, Appl. Phys. Lett. 87, 122901 (2005). 5) High k Gate Dielectrics, edited by M. Houssa (IOP, London, 2003). 6) M. Houssa, S. D. Gendt, J. L. Autran, G. Groeseneken, and M. M. Heyns, Appl. Phys. Lett. 85, 2101 (2004). 7) M. H. Hakala, A. S. Foster, J. L. Gavartin, P. Havu, M. J. Puska, and R. M. Nieminen, J. Appl. Phys. 100, 043708 (2006). 8) S. Dueñas, H. Castán, H. García, A. Gómez, L. Bailón, M. Toledano-Luque, I. Mártil, and G. González-Díaz, Semicond. Sci. Technol. 22, 1344 (2007). 9) G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001). 10) E. San Andrés, M. Toledano-Luque, A. Prado, M. A. Navacerrada, I. Mártil, G. González-Díaz, F. L. Martínez, W. Bohne, J. Röhrich, and E. Strub, J. Vac. Sci. Technol. A 23, 1523 (2005). 11) W. Kern and D. S. Puotinen, RCA Rev. 31, 187 (1970). 12) M. Toledano-Luque, E. San Andrés, J. Olea, A. Prado, I. Mártil, W. Bohne, J. Röhrich, and E. J. Strub, Mater. Sci. Semicond. Process. 9, 1020 (2006). 13) T. S. Eriksson and C. G. Granqvist, J. Appl. Phys. 60, 2081 (1986). 14) D. A. Neumayer and E. Cartier, J. Appl. Phys. 90, 1801 (2001). 15) S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981). 16) L. He, H. Hasegawa, T. Sawada, and H. Ohno, J. Appl. Phys. 63, 2120 (1988). 17) S. Dueñas, R. Peláez, H. Castán, R. Pinacho, L. Quintanilla, J. Barbolla, I. Mártil, and G. González-Díaz, Appl. Phys. Lett. 71, 826 (1997). 18) H. Castán, S. Dueñas, J. Barbolla, E. Redondo, N. Blanco, I. Mártil, and G. González-Díaz, Microelectron. Reliab. 40, 845 (2000). 19) S. Dueñas, H. Castán, H. García, L. Bailón, K. Kukli, M. Ritala, and M. Leskelä, Microelectron. Reliab. 47, 653(2007). 20) J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000). 21) V. A. Gritsenko and E. E. Meerson, Phys. Rev. B 57, R2081 (1998). 22) N. Jehanathan, M. Saunders, Y. Liu, and J. Dell, Acta Mater. 57, 739 (2007). 23) H. Schmidt, W. Gruber, G. Borchardt, M. Bruns, M. Rudolphi, and H. Baumann, Thin Solid Films 450, 346 (2004). 24) H. Castán, S. Dueñas, J. Barbolla, A. del Prado, I. Mártil, and G. González-Díaz, Jpn. J. Appl. Phys., Part 1 42, 4978 (2003). 25) N. Novkovski and E. Atanassova, Appl. Phys. A: Mater. Sci. Process. 83, 435 (2006). 26) B. O. Cho, J. Wang, L. Sha, and J. P. Chang, Appl. Phys. Lett. 80, 1052 (2002). 27) N. A. Hegab and H. E. Atya, J. Ovonic Research 2, 21 (2006). 28) J. Frenkel, Phys. Rev. 54, 647 (1938). 29) D. S. Jeong, H. B. Park, and C. S. Hwang, Appl. Phys. Lett. 86, 072903 (2005).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,26libre.pdf
Size:
700.64 KB
Format:
Adobe Portable Document Format

Collections