Superfluidez correlacionada y caos cuántico en un gas de bosones conducido periódicamente en el tiempo
Loading...
Download
Official URL
Full text at PDC
Publication date
2025
Defense date
14/03/2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
En los últimos años, la física de átomos fríos en redes ópticas ha experimentado un auge importante. El elevado grado de control experimental sobre diferentes parámetros de estos sistemas los convierte en candidatos perfectos para la simulación cuántica. En concreto, son simuladores idóneos para sistemas de física del estado sólido o de materia condensada. En tal contexto, cobra especial importancia el modelo de Bose-Hubbard, que describe la física de partículas bosónicas confinadas en un red óptica, y que da cuenta de la transición de fase cuántica de aislante de Mott a superfluido. Tanto a nivel teórico como experimental, los diferentes términos de su hamiltoniano (cinético, interacción y potencial), se pueden modificar temporalmente. Si dicha manipulación es además periódica, es posible obtener un hamiltoniano efectivo, totalmente independiente del tiempo, mediante ingeniería de Floquet...
In recent years, the physics of cold atoms in optical lattices has experienced an important boom. The high degree of experimental control over different parameters of these systems makes them perfect candidates for quantum simulation. Specifically, they are ideal simulators for solid state or condensed matter physics systems. In this context, the Bose-Hubbard model is of particular significance. This model describes the physics of bosonic particles confined in optical lattices, and it also exhibits the quantum phase transition from Mott insulator to superfluid. From both a theoretical and experimental point of view, the different terms of its Hamiltonian (kinetic, interaction and potential) can be modified in time. If such manipulation is also periodic, it is possible to obtain an effective Hamiltonian, which is totally independent of time, through Floquet engineering...
In recent years, the physics of cold atoms in optical lattices has experienced an important boom. The high degree of experimental control over different parameters of these systems makes them perfect candidates for quantum simulation. Specifically, they are ideal simulators for solid state or condensed matter physics systems. In this context, the Bose-Hubbard model is of particular significance. This model describes the physics of bosonic particles confined in optical lattices, and it also exhibits the quantum phase transition from Mott insulator to superfluid. From both a theoretical and experimental point of view, the different terms of its Hamiltonian (kinetic, interaction and potential) can be modified in time. If such manipulation is also periodic, it is possible to obtain an effective Hamiltonian, which is totally independent of time, through Floquet engineering...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, leída el 14/03/2024