Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The strict topology on spaces of bounded holomorphic functions.

dc.contributor.authorFerrera Cuesta, Juan
dc.contributor.authorPrieto Yerro, M. Ángeles
dc.date.accessioned2023-06-20T16:51:44Z
dc.date.available2023-06-20T16:51:44Z
dc.date.issued1994
dc.description.abstractThe authors consider the space of bounded holomorphic functions on the open unit ball of a Banach space with the natural analogue of the strict topology β for the one- (or finite-)dimensional case. This can be defined by means of weighted seminorms or as the mixed topology (in the sense of Wiweger) of the supremum norm and the topology of uniform convergence on subsets of the unit ball which are bounded away from its complement. The natural analogues of some elementary properties of the one-dimensional case are obtained. In a second section, some properties of H∞ as a topological algebra are discussed. In particular, the spectrum is identified (under some rather restrictive conditions on the Banach space) and this is used to obtain a representation for strictly continuous homomorphisms between such H∞-algebras
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15314
dc.identifier.doi10.1017/S0004972700016312
dc.identifier.issn0004-9727
dc.identifier.officialurlhttp://journals.cambridge.org/download.php?file=%2FBAZ%2FBAZ49_02%2FS0004972700016312a.pdf&code=0df486888232f81e91f4e05f6aebbcf2
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57259
dc.issue.number2
dc.journal.titleBulletin of the Australian Mathematical Society
dc.language.isoeng
dc.page.final256
dc.page.initial249
dc.publisherAustralian Mathematical Society
dc.relation.projectID90-0044
dc.rights.accessRightsrestricted access
dc.subject.cdu517.986.6
dc.subject.cdu517.518.45
dc.subject.keywordSpace of bounded holomorphic functions on the open unit ball of a Banach space
dc.subject.keywordStrict topology
dc.subject.keywordApproximation by polynomials
dc.subject.keywordContinuous homomorphisms
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleThe strict topology on spaces of bounded holomorphic functions.
dc.typejournal article
dc.volume.number49
dcterms.referencesAlencar, R., ‘On the reflexivity and basis for P(mE)’, Proc. Roy. Irish Acad, 85 A (1985), 131–138. Alencar, R., Aron, R. and Dineen, S., ‘A reflexive space of holomorphic functions in infinitely many variables’, Proc. Amer. Math. Soc. 90 (1984), 407–411. Aron, R., ‘Compact polynomials and compact differentiable mappings between Banach spaces’, in Sém. Pierre Lelong, Lecture Notes in Maths 529 (Springer-Verlag, Heidelberg, Berlin, New York, 1976), pp. 213–222. Aron, R. and Berner, P., ‘A Hahn-Banach extension theorem for analytic mappings’, Bull. Soc. Math. France 106 (1978), 3–24. Bochnak, J. and Siciak, J., ‘Polynomials and multilinear mappings’, in Algebraic properties of classes of analytic functions Sem. Analytic Functions II, (R.C. Buck, Editor), 1957, pp. 175–188. Buck, R.C., ‘Bounded continuous functions on locally compact spaces’, Michigan Math. J. 5 (1958), 95–104. Chae, S.B., Holomorphy and calculus in Banach spaces (Marcel Dekker, New York, 1985). Cooper, J.B., ‘The strict topology and spaces with mixed topology’, Proc. Amer. Math. Soc. 30 (1971), 583–592. Davie, A. and Gamelin, T., ‘A theorem on polynomial-star topology’, Proc. Amer. Math. Soc. 106 (1989), 351–356. Dunford, N., ‘Uniformity in linear spaces’, Trans. Amer. Math. Soc. 44 (1938), 305–356. Garnett, J., Bounded analytic functions (Academic Press, New York, 1981). Isidro, J., ‘Topological duality on the functional space (Hb(U;F), τb)’, Proc. Roy. Irish Acad. 79A (1979), 115–130. Köthe, G., Topological vector spaces, Grundlehren Math. Wiss. 159 (Springer-Verlag, Berlin, Heidelberg, New York, 1969). Landau, E., ‘Abschätzung der Koeffzientensumme einer Potenzreihe’, Arch. Math. Phys. 21 (1913), 42–50. Prieto, A., La topología estricta en espacios de funciones holomorfas, Thesis (Universidad Complutense de Madrid, 1989). Prieto, A., ‘Strict and mixed topologies on function spaces’, Math. Nachr. 155 (1992), 289–293. Prieto, A., ‘Sur le lemme de Schwarz en dimension infinite’, C.R. Acad. Sci. Paris Ser. I 314 (1992), 741–742. Rubel, L. and Shields, A., ‘The space of bounded analytic functions on a region’, Ann. Inst. Fourier (Grenoble) 16 (1966), 235–277. Tsirelson, B., ‘Not every Banach space contains an imbedding of lp or co’, Funct. Anal. Appl. 8 (1974), 138–141.
dspace.entity.typePublication
relation.isAuthorOfPublication1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3
relation.isAuthorOfPublicationf2a43f90-b551-412e-a95d-2587bbfaa27d
relation.isAuthorOfPublication.latestForDiscovery1a91d6af-aaeb-4a3e-90ce-4abdf2b90ac3

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
15.pdf
Size:
415.73 KB
Format:
Adobe Portable Document Format

Collections