Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analysis and comparisons of some solution concepts for stochastic programming problems

dc.contributor.authorCaballero Fernández, Rafael
dc.contributor.authorCerdá Tena, Emilio Jaime
dc.contributor.authorMuñoz Martos, María del Mar
dc.contributor.authorRey, Lourdes
dc.date.accessioned2023-06-21T01:45:53Z
dc.date.available2023-06-21T01:45:53Z
dc.date.issued2002-09
dc.description.abstractThe aim of this study is to analyse the resolution of Stochastic Programming Problems in which the objective function depends on parameters which are continuous random variables with a known distribution probability. In the literature on these questions different solution concepts have been defined for problems of these characteristics. These concepts are obtained by applying a transformation criterion to the stochastic objective which contains a statistical feature of the objective, implying that for the same stochastic problem there are different optimal solutions available which, in principle, are not comparable. Our study analyses and establishes some relations between these solution concepts.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/7677
dc.identifier.relatedurlhttps://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64508
dc.issue.number18
dc.language.isoeng
dc.page.total27
dc.publication.placeMadrid
dc.publisherInstituto Complutense de Análisis Económico. Universidad Complutense de Madrid.
dc.relation.ispartofseriesDocumentos de trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rights.accessRightsopen access
dc.subject.keywordStochastic Programming
dc.subject.keywordOptimal solution concepts
dc.subject.ucmEconomía pública
dc.titleAnalysis and comparisons of some solution concepts for stochastic programming problems
dc.typetechnical report
dc.volume.number2002
dcterms.referencesBereanu B. (1964). Programme de Risque Minimal en Programmation Linéaire Stochastique. C. R. Acad. Sci. Paris 259, 981-983. Charnes A. and Cooper W.W. (1963). Deterministic Equivalents for Optimizing and Satisfying under Chance Constraints. Operations Research 11, 1, 18-39. Kall P. (1982). Stochastic Programming. European Journal of Operational Research 10, 125-130. Kall P. and Wallace S.W. (1994). Stochastic Programming. John Wiley and Sons. Chichester. Kataoka S. (1963). A Stochastic Programming Model. Econometrica 31, 181-196. Kibzun A.I. and Kan I.S. (1996). Stochastic Programming Problems with Probability and Quantile Functions. John Wiley and Sons. Chichester. Leclerq J.P. (1982). Stochastic Programming: An Interactive Multicriteria Approach. European Journal of Operational Research 10 , 33-41. Markowitz H. (1952). Portfolio Selection. The Journal of Finance 7, 77-91. Prékopa A. (1995). Stochastic Programming. Kluwer Academic Publishers. Dordrecht. Sawaragi Y., Nakayama H. and Tanino T. (1985). Theory of Multiobjective Optimization. Academic Press. New York. Stancu-Minasian I.M. (1984). Stochastic Programming with Multiple Objective Functions. D. Reidel Publishing Company. Dordrecht. Zare Y. and Daneshmand A. (1995). A Linear Approximation method for solving a special class of the chance constrained programming problem. European Journal of Operational Research 80, 213-225.
dspace.entity.typePublication
relation.isAuthorOfPublication175b0308-6eb3-4282-b17d-221c851b2595
relation.isAuthorOfPublication.latestForDiscovery175b0308-6eb3-4282-b17d-221c851b2595

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0218.pdf
Size:
117.81 KB
Format:
Adobe Portable Document Format