Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

An extension of likelihood-ratio-test for testing linear hypotheses in the baseline-category logit model

dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorPardo Llorente, María del Carmen
dc.date.accessioned2023-06-20T09:43:51Z
dc.date.available2023-06-20T09:43:51Z
dc.date.issued2008-01-01
dc.description.abstractA new family of test statistics for testing linear hypotheses in baseline-category logit models is introduced and its asymptotic distribution is obtained. The new family is a natural extension of the classical likelihood ratio test. A simulation study is carried out to find new test statistics that offer an attractive alternative to the classical likelihood ratio test in terms of both exact size and exact power.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17605
dc.identifier.doihttp://0-dx.doi.org.cisne.sim.ucm.es/10.1016/j.csda.2007.04.007
dc.identifier.issn0167-9473
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0167947307001600
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50262
dc.issue.number3
dc.journal.titleComputational statistics and data analysis
dc.language.isoeng
dc.page.final1489
dc.page.initial1477
dc.publisherElsevier Science
dc.relation.projectIDMTM2006-00892
dc.relation.projectIDUCM2006-910707
dc.rights.accessRightsrestricted access
dc.subject.cdu519.233.5
dc.subject.keywordbaseline-category logit model
dc.subject.keywordextended likelihood ratio test statistics
dc.subject.keywordlinear hypotheses
dc.subject.keyworddivergnece.
dc.subject.ucmEstadística aplicada
dc.titleAn extension of likelihood-ratio-test for testing linear hypotheses in the baseline-category logit model
dc.typejournal article
dc.volume.number52
dcterms.referencesAli, S.M., Silvey, S.D., 1966. A general class of coefficients of divergence of one distribution from another. J. R. Statist. Soc. Ser. B 26, 131–142. Bock, R.D., 1970. Estimating multinomial response relations. In: Bose, R.C. (Ed.),Contributions to Statistics and Probability. University of North Carolina Press, Chapel Hill, NC, pp. 453–479. Cressie, N., Read, T.R.C., 1984. Multinomial goodness-of-fit tests. J. R. Statist. Soc. Ser. B 46, 440–464. Csiszár, I., 1963. Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität on Markhoffschen Ketten. Publ. Math. Inst. Hung. Acad. of Sci. Ser. A 8, 85–108. Dik, J.J., Gunst, M.C.M., 1985. The distribution of general quadratic forms in normal variables. Statistica Neerlandica 39 (1), 14–26. Gupta, A.K., Kasturiratna, D., Nguyen, T., Pardo, L., 2006a.Anewfamily of BANestimators in polytomous regression models based on-divergence measures. Statist. Methods Appl. 15, 159–176. Gupta, A.K., Nguyen, T., Pardo, L., 2006b. Some inference procedures in polytomous logistic regression models based on -divergences measures. Math. Methods Statist. 15 (3), 269–288. Haberman, S.J., 1974. The Analysis of Frequency Data. University of Chicago Press, Chicago. Liu, I., Agresti, A., 2005. The analysis of ordered categorical data: an overview and a survey of recent developments. Test 14 (1), 1–73. Mantel, N., 1966. Models for complex contingency tables and polychotomous dosage response curves. Biometrics 22, 83–95. Nerlove, M., Press, S.J., 1973. Univariate and multivariate log-linear and logistic models. Technical Report R-1306-EDA/NIH, Rand Corporation, Santa Monica, CA. Pardo, L., 2006. Statistical Inference Based on Divergence Measures Statistics: Textbooks and Monographs. Chapman & Hall/CRC, New York. Pardo, J.A., Pardo, L., Zografos, K., 2002. Minimum phi-divergence Estimator with constraints in multinomial populations. J. Statist. Plann. Inference 104, 221–237. Pardo, J.A., Pardo, L., Pardo, M.C., 2005. Minimum phi-divergence estimator in logistic regression model. Statist. Papers 47, 91–108. Theil, H., 1969. A multinomial extension of the linear logit model. Int. Econ. Rev. 10, 103–154. Theil, H., 1970. On the estimation of relationships involving qualitative variables. Am. J. Sociol. 76, 251–259. Vajda, I., 1989. Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht.
dspace.entity.typePublication
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscoverya6409cba-03ce-4c3b-af08-e673b7b2bf58

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoLeandro15.pdf
Size:
197.15 KB
Format:
Adobe Portable Document Format

Collections