Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Minimal Neural Network Conditions for Encoding Future Interactions

dc.contributor.authorDíez Hermano, Sergio
dc.contributor.authorAparicio Rodriguez, Gonzalo
dc.contributor.authorManubens, Paloma
dc.contributor.authorSánchez Jiménez, Abel
dc.contributor.authorCalvo Tapia, Carlos
dc.contributor.authorLevcik, David
dc.contributor.authorVillacorta Atienza, José Antonio
dc.date.accessioned2025-04-07T10:18:15Z
dc.date.available2025-04-07T10:18:15Z
dc.date.issued2025
dc.descriptionThis research was supported by the Ministry of Science and Innovation (Spain), Grant PID2022-138659NB-I00, awarded to J.A.V-A, and by the project National Institute for Neurology Research (Programme EXCELES, ID Project No. LX22NPO5107) — Funded by the European Union — Next Generation EU.
dc.description.abstractSpace and time are fundamental attributes of the external world. Deciphering the brain mechanisms involved in processing the surrounding environment is one of the main challenges in neuroscience. This is particularly defiant when situations change rapidly over time because of the intertwining of spatial and temporal information. However, understanding the cognitive processes that allow coping with dynamic environments is critical, as the nervous system evolved in them due to the pressure for survival. Recent experiments have revealed a new cognitive mechanism called time compaction. According to it, a dynamic situation is represented internally by a static map of the future interactions between the perceived elements (including the subject itself). The salience of predicted interactions (e.g. collisions) over other spatiotemporal and dynamic attributes during the processing of time-changing situations has been shown in humans, rats, and bats. Motivated by this ubiquity, we study an artificial neural network to explore its minimal conditions necessary to represent a dynamic stimulus through the future interactions present in it. We show that, under general and simple conditions, the neural activity linked to the predicted interactions emerges to encode the perceived dynamic stimulus. Our results show that this encoding improves learning, memorization and decision making when dealing with stimuli with impending interactions compared to no-interaction stimuli. These findings are in agreement with theoretical and experimental results that have supported time compaction as a novel and ubiquitous cognitive process.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationDiez-Hermano, S., Aparicio-Rodriguez, G., Manubens, P., Sanchez-Jimenez, A., Calvo-Tapia, C., Levcik, D., & Villacorta-Atienza, J. A. (2025). Minimal neural network conditions for encoding future interactions. International Journal of Neural Systems, 35(04), 2550016. https://doi.org/10.1142/S0129065725500169
dc.identifier.doi10.1142/s0129065725500169
dc.identifier.issn0129-0657
dc.identifier.issn1793-6462
dc.identifier.officialurlhttps://doi.org/10.1142/S0129065725500169
dc.identifier.relatedurlhttps://www.worldscientific.com/doi/10.1142/S0129065725500169?srsltid=AfmBOop_Nd6NN6YkefOnvSDeo8D80PqphzfZ6L1anV5nQ0B7HZMC--F3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/119312
dc.issue.number4
dc.journal.titleInternational Journal of Neural Systems
dc.language.isoeng
dc.publisherWorld Scientific Publishing Company
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN/PID2022-138659NB-I00/ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/Next Generation EU/LX22NPO5107/EU/EXCELES ,
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu004.8
dc.subject.cdu612.8
dc.subject.cdu519.7
dc.subject.keywordNeural networks
dc.subject.keywordSpatiotemporal cognition
dc.subject.keywordMemory
dc.subject.keywordLearning
dc.subject.keywordDynamic environments
dc.subject.keywordInteractions
dc.subject.ucmNeurociencias (Biológicas)
dc.subject.unesco2490 Neurociencias
dc.titleMinimal Neural Network Conditions for Encoding Future Interactions
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number35
dspace.entity.typePublication
relation.isAuthorOfPublication8aa7447f-ba39-432e-a038-0bdac92cfebc
relation.isAuthorOfPublicationff846d72-46f4-41b1-8aaf-451177e6e1f8
relation.isAuthorOfPublication7de9bed2-b9e9-42b3-a058-9fd2ef09f4b4
relation.isAuthorOfPublication21b23d2b-75f8-4803-9370-4e88539b81cc
relation.isAuthorOfPublication.latestForDiscovery8aa7447f-ba39-432e-a038-0bdac92cfebc

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Minimal_neural_networks.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format

Collections