Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Projective representations of the inhomogeneous Hamilton group: Noninertial symmetry in quantum mechanics

dc.contributor.authorLow, Stephen
dc.contributor.authorJarvis, P. D.
dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.date.accessioned2023-06-20T03:31:55Z
dc.date.available2023-06-20T03:31:55Z
dc.date.issued2012
dc.description.abstractSymmetries in quantum mechanics are realized by the projective representations of the Lie group as physical states are defined only up to a phase. A cornerstone theorem shows that these representations are equivalent to the unitary representations of the central extension of the group. The formulation of the inertial states of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group, and its nonrelativistic limit in terms of the Galilei group, are fundamental examples. Interestingly, neither of these symmetries include the Weyl–Heisenberg group; the hermitian representations of its algebra are the Heisenberg commutation relations that are a foundation of quantum mechanics. The Weyl–Heisenberg group is a one dimensional central extension of the abelian group and its unitary representations are therefore a particular projective representation of the abelian group of translations on phase space. A theorem involving the automorphism group shows that the maximal symmetry that leaves the Heisenberg commutation relations invariant is essentially a projective representation of the inhomogeneous symplectic group. In the nonrelativistic domain, we must also have invariance of Newtonian time. This reduces the symmetry group to the inhomogeneous Hamilton group that is a local noninertial symmetry of the Hamilton equations. The projective representations of these groups are calculated using the Mackey theorems for the general case of a nonabelian normalsubgroup.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20782
dc.identifier.doi10.1016/j.aop.2011.10.010
dc.identifier.issn0003-4916
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/00034916
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43746
dc.issue.number1
dc.journal.titleAnnals of Physics
dc.language.isoeng
dc.page.final101
dc.page.initial74
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu530.145
dc.subject.keywordNoninertial symmetry
dc.subject.keywordHamilton group
dc.subject.keywordMackey representations
dc.subject.keywordBorn reciprocity
dc.subject.keywordProjective representations
dc.subject.keywordSemidirect product group
dc.subject.ucmTeoría de los quanta
dc.subject.unesco2210.23 Teoría Cuántica
dc.titleProjective representations of the inhomogeneous Hamilton group: Noninertial symmetry in quantum mechanics
dc.typejournal article
dc.volume.number327
dcterms.referencesA.O. Barut, R. Raczka, Theory of Group Representations and Applications, World Scientific, Singapore, 1986. G.W. Mackey, The Theory of Unitary Group Representations, University of Chicago Press, Chicago, 1976. E.P. Wigner, Ann. of Math. 40 (1939) 149–204. S. Weinberg, The Quantum Theory of Fields, vol. 1, Cambridge, Cambridge, 1995. M.C. Berg, C. DeWitt-Morette, S. Gow, E. Kramer, Rev. Math. Phys. 13 (2001) 953–1034. J.A. Azcarraga, J.M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics, Cambridge University Press, Cambridge, 1998. E. Inönü, E.P. Wigner, Nuovo Cimento 9 (1952) 707–718. J. Voisin, J. Math. Phys. 6 (1965) 1519–1529. P. Dirac, Fields Quanta 3 (1972) 139. R. Gilmore, Lie Groups, Physics, and Geometry, Cambridge, Cambridge, 2008. S.G. Low, J. Math. Phys. 48 (2007) 102901. V. Bargmann, Ann. of Math. 59 (1954) 1–46. G.W. Mackey, Acta Math. 99 (1958) 265–311. E. Wigner, Group Theory and its Application to Atomic Spectra, Academic Press, New York, 1968. G.B. Folland, Harmonic Analysis on Phase Space, Princeton University Press, Princeton, 1989. S.G. Low, J. Phys. A 41 (2008) 304034. R. Campoamor-Stursberg, S.G. Low, J. Phys. A 42 (2009) 065205–065218. M.E. Major, J. Math. Phys. 18 (1977) 1938–1943. S.G. Low, J. Phys. A 35 (2002) 5711–5729. B.C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, New York, 2000. M. Born, Proc. Roy. Soc. London A 165 (1938) 291–302. M. Born, Rev. Modern Phys. 21 (1949) 463–473. S.G. Low, Found. Phys. 36 (2006) 1036–1069. S.G. Low, J. Phys. A 40 (2007) 3999–4016. P.D. Jarvis, S.O. Morgan, Found. Phys. Lett. 19 (2006) 501–517. J. Govaerts, P.D. Jarvis, S.O. Morgan, S.G. Low, J. Phys. A 40 (2007) 12095–12111. P.D. Jarvis, S.O. Morgan, J. Phys. A 41 (2008) 465203. E. Inönü, E. Wigner, Proc. Natl. Acad. Sci. 39 (1953) 510. S.G. Low, J. Phys. Conf. Ser. 284 (2011) 012045. E.P. Wigner, Phys. Rev. 40 (1932) 749–759. Y.S. Kim, M.E. Noz, Phase Space Picture of Quantum Mechanics: Group Theoretical Approach, World Scientific, Singapore, 1991. J.E. Moyal, Math. Proc. Camb. Phil. Soc. 45 (1949) 99–124.
dspace.entity.typePublication
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery72801982-9f3c-4db0-b765-6e7b4aa2221b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Campoamor-Projective.pdf
Size:
379.29 KB
Format:
Adobe Portable Document Format

Collections