Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons

dc.contributor.authorLin, Runliang
dc.contributor.authorPeng, Hua
dc.contributor.authorMañas Baena, Manuel Enrique
dc.date.accessioned2023-06-20T03:56:23Z
dc.date.available2023-06-20T03:56:23Z
dc.date.issued2010-08-29
dc.description©IOP Publishing Ltd. The authors are grateful to the referees for the quite valuable comments. This work is supported by National Basic Research Program of China (973 Program) 2007CB814800) and National Natural Science Foundation of China (grand No. 10801083 and 10901090). RL acknowledges the economical support from “Banco Santander–Tsinghua University” program for his stay in UCM, and he also thanks the Departamento de Física Te´orica II (UCM) for the warm hospitality.
dc.description.abstractBased on the eigenfunction symmetry constraint of the q-deformed modified KP hierarchy, a q-deformed mKP hierarchy with self-consistent sources (q-mKPHSCSs) is constructed. The q-mKPHSCSs contain two types of q-deformed mKP equation with self-consistent sources. By the combination of the dressing method and the method of variation of constants, a generalized dressing approach is proposed to solve the q-deformed KP hierarchy with self-consistent sources (q-KPHSCSs). Using the gauge transformation between the q-KPHSCSs and the q-mKPHSCSs, the q-deformed Wronskian solutions for the q-KPHSCSs and the q-mKPHSCSs are obtained. The one-soliton solutions for the q-deformed KP (mKP) equation with a source are given explicitly.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipNational Basic Research Program of China
dc.description.sponsorshipNational Natural cience Foundation of China (973 Program)
dc.description.sponsorshipBanco Santander-Tsinghua University
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31497
dc.identifier.doi10.1088/1751-8113/43/43/434022
dc.identifier.issn1751-8113
dc.identifier.officialurlhttp://dx.doi.org/10.1088/1751-8113/43/43/434022
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1005.3878
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44698
dc.issue.number43
dc.journal.titleJournal of Physics A: Mathematical and Theoretical
dc.language.isoeng
dc.publisherIOP Publishing Ltd
dc.relation.projectID2007CB814800
dc.relation.projectID10801083
dc.relation.projectID10901090
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQ-pseudodifferential symbols
dc.subject.keywordN-component Kp
dc.subject.keywordBacklund-transformations
dc.subject.keywordQ-deformation
dc.subject.keywordKdv equation
dc.subject.keywordSymmetries
dc.subject.keywordAlgebra
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThe q-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons
dc.typejournal article
dc.volume.number43
dcterms.references[1] Majid S 1995 Foundations of quantum group theory (Cambridge: Cambridge University Press) [2] Frenkel E and Reshetikhin N 1996 Comm. Math. Phys. 178 237–264 [3] Mas J and Seco M 1996 J. Math. Phys. 37 6510–6529 [4] Khesin B, Lyubashenko V and Roger C 1997 J. Funct. Anal. 143 55–97 [5] Klimyk A and Schm¨udgen K 1997 q-calculus, in Quantum Groups and Their Represntaions (Berlin: Springer) [6] Adler M, Horozov E and van Moerbeke P 1998 Phys. Lett. A 242 139–151. [7] Iliev P 1998 Lett. Math. Phys. 44 187–200 [8] Iliev P 2000 J. Geom. Phys. 35 157–182 [9] Tu M H 1999 Lett. Math. Phys. 49 95–103 [10] Wang S K, Wu K, Wu X N and Wu D L 2001 J. Phys. A: Math. Gen. 34 9641–9651 [11] Kac V and Cheung P 2002 Quantum calculus (New York: Springer-Verlag) [12] Takasaki K 2005 Lett. Math. Phys., 72 165– 181 [13] He J S, Li Y H and Cheng Y 2006 Symmetry, Integrability and Geometry: Methods and Applications 2 060 [14] Date E, Jimbo M, Kashiwara M and Miwa T 1981 J. Phys. Soc. Japan 50(11) 3806–3812 [15] Kac V G and van de Leur J W 2003 J. Math. Phys. 44(8) 3245–3293. [16] van de Leur J 1998 J. Math. Phys. 39(5) 2833–2847 [17] Mel’nikov V K 1983 Lett. Math.Phys. 7 129–136 [18] Mel’nikov V K 1987 Comm. Math. Phys. 112 639–652 [19] Lin R L, Zeng Y B and Ma W-X 2001 Physica A 291 287–298 [20] Lin R L, Yao H S and Zeng Y B 2006 Symmetry, Integrability and Geometry: Methods and Applications 2 096 [21] Zeng Y B, Ma W-X and Lin R L 2000 J. Math. Phys. 41 5453–5489 [22] Hu X B and Wang H Y 2006 Inverse Problems 22 1903–1920 [23] Zhang D J 2002 J. Phys. Soc. Japan 71 2649–2656 [24] Liu X J, Zeng Y B and Lin R L 2008 Phys. Lett. A 372 3819–3823 [25] Liu X J, Lin R L and Zeng Y B 2009 J. Math. Phys, 50 053506 [26] Lin R L, Liu X J and Zeng Y B 2008 J. Nonlinear Math. Phys., 15 133–147 [27] Dickey L A 2003 Soliton equations and Hamiltonian systems (Singapore: World Scientific) [28] Gürses M, Guseinov G Sh and Silindir B 2005 J. Math. Phys. 46 113510 [29] Blaszak M, Silindir B and Szablikowski B M 2008 J. Phys. A: Math. Theor. 41 385203 [30] Oevel W and Strampp W 1996 J. Math. Phys 37 6213–6219 [31] Oevel W and Strampp W 1993 Commun. Math. Phys. 157 51 [32] Oevel W and Carillo S 1998 J. Math. Anal. Appl. 217 161 [32] Oevel W and Carillo S 1998 J. Math. Anal. Appl. 217 161
dspace.entity.typePublication
relation.isAuthorOfPublication0d5b5872-7553-4b33-b0e5-085ced5d8f42
relation.isAuthorOfPublication.latestForDiscovery0d5b5872-7553-4b33-b0e5-085ced5d8f42

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mañas07preprint.pdf
Size:
197.52 KB
Format:
Adobe Portable Document Format

Collections