Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress

dc.contributor.authorJara Pérez, Josué
dc.contributor.authorAlarcón, Francisco
dc.contributor.authorMonnappa, Ajay K.
dc.contributor.authorSantos, José Ignacio
dc.contributor.authorBianco, Valentino
dc.contributor.authorNie, Pin
dc.contributor.authorCiamarra, Massimo Pica
dc.contributor.authorCanales, Ángeles
dc.contributor.authorDinis Vizcaíno, Luis Ignacio
dc.contributor.authorLópez-Montero, Iván
dc.contributor.authorValeriani, Chantal
dc.contributor.authorOrgaz Martín, Belén
dc.date.accessioned2023-06-17T09:08:49Z
dc.date.available2023-06-17T09:08:49Z
dc.date.issued2021-01-12
dc.descriptionThis work was supported by the UCM/Santander grant PR26/16-10B (CV, BO, and IL-M). IL-M, LD, and CV acknowledge financial support through grants PGC2018-097903-B-100, FIS2017-83706-R and FIS2016-78847. AKM is recipient of a Sara Borrell fellowship (CD18/00206) financed by the Spanish Ministry of Health. FA acknowledges the support from a Juan de la Cierva fellowship and VB from the Marie Sklodowska-Curie Fellowship No. 748170 ProFrost.
dc.description.abstractIn some conditions, bacteria self-organize into biofilms, supracellular structures made of a self-produced embedding matrix, mainly composed of polysaccharides, DNA, proteins, and lipids. It is known that bacteria change their colony/matrix ratio in the presence of external stimuli such as hydrodynamic stress. However, little is still known about the molecular mechanisms driving this self-adaptation. In this work, we monitor structural features of Pseudomonas fluorescens biofilms grown with and without hydrodynamic stress. Our measurements show that the hydrodynamic stress concomitantly increases the cell density population and the matrix production. At short growth timescales, the matrix mediates a weak cell-cell attractive interaction due to the depletion forces originated by the polymer constituents. Using a population dynamics model, we conclude that hydrodynamic stress causes a faster diffusion of nutrients and a higher incorporation of planktonic bacteria to the already formed microcolonies. This results in the formation of more mechanically stable biofilms due to an increase of the number of crosslinks, as shown by computer simulations. The mechanical stability also relies on a change in the chemical compositions of the matrix, which becomes enriched in carbohydrates, known to display adhering properties. Overall, we demonstrate that bacteria are capable of self-adapting to hostile hydrodynamic stress by tailoring the biofilm chemical composition, thus affecting both the mesoscale structure of the matrix and its viscoelastic properties that ultimately regulate the bacteria-polymer interactions.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUCM/Santander grant
dc.description.sponsorshipSara Borrell fellowship - Spanish Ministry of Health
dc.description.sponsorshipJuan de la Cierva fellowship
dc.description.sponsorshipMarie Sklodowska-Curie Fellowship
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/66742
dc.identifier.doi10.3389/fmicb.2020.588884
dc.identifier.issn1664-302X
dc.identifier.officialurlhttps://doi.org/10.3389/fmicb.2020.588884
dc.identifier.relatedurlhttps://www.frontiersin.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8272
dc.journal.titleFrontiers in Microbiology
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.projectIDPR26/16-10B
dc.relation.projectIDPGC2018-097903-B-100
dc.relation.projectIDFIS2017-83706-R
dc.relation.projectIDFIS2016-78847
dc.relation.projectIDCD18/00206
dc.relation.projectID748170 ProFrost
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu539.1
dc.subject.keywordBacterial biofilms
dc.subject.keywordViscoelastic properties
dc.subject.keywordAntibiotic-resistance
dc.subject.keywordMechanical-properties
dc.subject.keywordGrowth
dc.subject.keywordAeruginosa
dc.subject.keywordDetachment
dc.subject.keywordDisinfection
dc.subject.keywordPopulation
dc.subject.keywordRemoval
dc.subject.ucmFísica nuclear
dc.subject.unesco2207 Física Atómica y Nuclear
dc.titleSelf-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication
relation.isAuthorOfPublicationcf2a0ecf-b928-4b74-8a56-7cbe6a72fe23
relation.isAuthorOfPublicationbab899d3-b920-429c-9061-5d0cefd5d756
relation.isAuthorOfPublication9e638286-12bd-4e2f-9a53-53f6d3dfb03e
relation.isAuthorOfPublication70e93697-1ddb-4497-977d-73fcf46c4837
relation.isAuthorOfPublication89887c57-ecc2-4267-b929-d5148ab8af66
relation.isAuthorOfPublication.latestForDiscoverycf2a0ecf-b928-4b74-8a56-7cbe6a72fe23

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dinis03libre+CC.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format

Collections