Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Covariant and Dynamical Reduction for Principal Bundle Field Theories

dc.contributor.authorCastrillón López, Marco
dc.contributor.authorMarsden, Jerrold E.
dc.date.accessioned2023-06-20T10:36:08Z
dc.date.available2023-06-20T10:36:08Z
dc.date.issued2008
dc.description.abstractReduction for field theories with symmetry can be done either covariantly—that is, on spacetime—or dynamically—that is, after spacetime is split into space and time. The purpose of this article is to show that these two reduction procedures are, in an appropriate sense, equivalent for a class of field theories whose fields take values in a principal bundle. One can think of this class of field theories as including examples such as a “sea of rigid bodies” with and appropriate interbody coupling potential.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipMCL
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22027
dc.identifier.doi10.1007/s10455-008-9108-x
dc.identifier.issn0232-704X
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2Fs10455-008-9108-x.pdf
dc.identifier.relatedurlhttp://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50728
dc.issue.number3
dc.journal.titleAnnals of global analysis and geometry
dc.language.isoeng
dc.page.final285
dc.page.initial263
dc.publisherSpringer
dc.relation.projectIDMTM2007-60017
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordVariational calculus · Symmetries · Reduction · Euler–Poincare equations
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleCovariant and Dynamical Reduction for Principal Bundle Field Theories
dc.typejournal article
dc.volume.number34
dcterms.referencesAbraham, R., Marsden, J.E.: Foundations of Mechanics (Benjamin-Cummings Publ. Co, Updated 1985 version, 2nd edn. reprinted by Perseus Publishing (1978) Bao, D., Marsden, J.E.,Walton, R.: The Hamiltonian structure of general relativistic perfect fluids. Comm. Math. Phys. 99, 319–345 (1985) Castrillón López, M., Marsden, J.E.: Some remarks on Lagrangian and Poisson reduction for field theories. J. Geom. Phys. 48, 52–83 (2003) Castrillón López, M., Muñoz Masqué, J.: The geometry of the bundle of connections. Math. Z. 236(4), 797–811 (2001) Castrillón López, M., Ratiu, T.S.: Reduction in principal bundles: covariant Lagrange-Poincaré equations. Comm. Math. Phys. 236(2), 223–250 (2003) Castrillón López, M., Ratiu, T.S., Shkoller, S.: Reduction inprincipal fiber bundles: covariant Euler-Poincaré equations. Proc. Amer. Math. Soc. 128(7), 2155–2164 (2000) Castrillón López, M., García Pérez, P.L., Ratiu, T.S.: Euler-Poincaré reduction on principal bundles. Lett. Math. Phys. 58(2), 167–180 (2001) Cendra, H., Marsden, J.E., Pekarsky, S., Ratiu, T.S.: Variational principles for Lie-Poisson and Hamilton- Poincaré equations. Mosc. Math. J. 3(3), 833–867 (2003) Cendra, H., Marsden, J.E., Ratiu, T.S.: Lagrangian reduction by stages. Mem. Amer. Math. Soc. 722, 1–108 (2001) García, P.L.: The Poincaré–Cartan invariant in the calculus of variation. In: Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), 53 #10037, 219–246 (Academic Press, London 1974) Gotay,M., Isenberg, J., Marsden, J.E.,Montgomery, R.:MomentumMaps and the Hamiltonian Structure of Classical Relativistic Field Theories I, Available at http://www.cds.caltech.edu/marsden/ (1997) Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, Wiley (1963) Marsden, J.E.,Misiołek, G., Ortega, J.-P., Perlmutter,M., Ratiu, T.S.: Hamiltonian Reduction by Stages, Springer Lecture Notes in Mathematics, vol. 1913. Springer-Verlag (2007) Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, volume 17 of Texts in Applied Mathematics, vol. 17; 1994, 2nd edn. Springer-Verlag (1999)
dspace.entity.typePublication
relation.isAuthorOfPublication32e59067-ef83-4ca6-8435-cd0721eb706b
relation.isAuthorOfPublication.latestForDiscovery32e59067-ef83-4ca6-8435-cd0721eb706b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Castrillón-covariant.pdf
Size:
317.9 KB
Format:
Adobe Portable Document Format

Collections