Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

One-dimensional versus two-dimensional surface states on stepped Au(111)

dc.contributor.authorOrtega, J. E.
dc.contributor.authorMugarza, A
dc.contributor.authorRepain, V
dc.contributor.authorRousset, S.
dc.contributor.authorPerez Dieste, V.
dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.date.accessioned2023-06-20T19:13:15Z
dc.date.available2023-06-20T19:13:15Z
dc.date.issued2002-04-15
dc.description© 2002 The American Physical Society. A.Mu. and J.E.O. are supported by the Universidad del País Vasco (1/UPV/EHU/00057.240-EA-8078/2000). V.R. and S.R. are supported by the CNRS-ULTIMATECH program, the CRIF and the Université de Paris 7. V. P.-D. is supported by the Comunidad Autónoma de Madrid (Project No. 07N/0042/98) and the DGICYT (Spain) (Grant No. PB-97-119). The experiments performed at LURE were funded by the Large Scale Facilities program of the European Union. Critical reading of the manuscript by F. J. Himpsel and F. J. García de Abajo is acknowledged. Technical support from the Spanish-French beam line staff is gratefully acknowledged
dc.description.abstractSurface states at vicinal Au(788) and Au(322) have been investigated with angle-resolved photoemission and synchrotron radiation. Both surfaces are characterized by highly regular one-dimensional step arrays with relatively wide (similar to3.9 Angstrom) or narrow (similar to1.3 Angstrom) terraces in Au(788) and Au(322), respectively. Depending on the terrace size we observe that surface electrons behave in a completely different way. In Au(788) terraces become one-dimensional, lateral quantum wells that confine surface electrons between adjacent steps. In Au(322) surface electrons propagate across the step array forming two-dimensional superlattice bands. By tuning photon energy and angle we probe fundamental properties of the electron wave functions in both cases.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad del País Vasco
dc.description.sponsorshipComunidad Autónoma de Madrid
dc.description.sponsorshipCNRS-ULTIMATECH
dc.description.sponsorshipDGICYT (Spain)
dc.description.sponsorshipCRIF
dc.description.sponsorshipUniversité de Paris
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28436
dc.identifier.doi10.1103/PhysRevB.65.165413
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.65.165413
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59406
dc.issue.number16
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectID1/UPV/EHU/00057
dc.relation.projectID240-EA-8078/2000
dc.relation.projectIDGrant No. PB-97-119
dc.relation.projectID07N/0042/98
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordMetal-Surfaces
dc.subject.keywordWave-Function
dc.subject.keywordCu(111)
dc.subject.keywordSpectroscopy
dc.subject.keywordConfinement
dc.subject.keywordModulation
dc.subject.keywordTerrace
dc.subject.keywordArrays
dc.subject.keywordSpin
dc.subject.keywordGold
dc.subject.ucmFísica de materiales
dc.titleOne-dimensional versus two-dimensional surface states on stepped Au(111)
dc.typejournal article
dc.volume.number65
dcterms.references1. F.J. Himpsel, J.E. Ortega, G.J. Mankey, and R.F. Willis, Adv. Phys. 47, 511 (1998). 2. R. Nötzel and K.H. Ploog, Adv. Mater. 5, 22 (1993); R. Nötzel, Z. Niu, M. Ramsteimer, H.P. Schönherr, A. Trampert, L. Däweritz, and K.H. Ploog, Nature (London) 392, 56 (1998); P. Segovia, D. Purdie, M. Hegsberger, and Y. Baer, ibid. 402, 504 (1999). 3. J.E. Ortega, S. Speller, A.R. Bachmann, A. Mascaraque, E.G. Michel, A. Närmann, A. Mugarza, A. Rubio, and F.J. Himpsel, Phys. Rev. Lett. 84, 6110 (2000). 4. A. Mugarza, A. Mascaraque, V. Pérez-Dieste, V. Repain, S. Rousset, F.J. Garcı´a de Abajo, and J.E. Ortega, Phys. Rev. Lett. 87, 107601 (2001). 5. Ph. Avouris and I.-W. Lyo, Science 264, 942 81994). 6. L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune, and K. Kern, Phys. Rev. Lett. 81, 5370 (1998). 7. X.Y. Wang, X.J. Shen, and R.M. Osgood, Jr., Phys. Rev. B 56, 7665 (1997). 8. F. Baumberger, T. Greber, and J. Osterwalder, Phys. Rev. B 64, 195411 (2001). 9. V. Repain, J.M. Berroir, B. Croset, S. Rousset, Y. Garreau, V.H. Etgens, and J. Lecoeur, Phys. Rev. Lett. 84, 5367 (2000). 10. W. Chen, V. Madhavan, T. Jamneala, and M.F. Crommie, Phys. Rev. Lett. 80, 1469 (1998). 11. J. Viernow, J.-L. Lin, D.Y. Petrovykh, F.M. Leibsle, F.K-. Men, and F.J. Himpsel, Appl. Phys. Lett. 72, 948 (1998). 12. F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Huüfner, Phys. Rev. B 63, 115415 (2001). 13. These strong differences between Au(322) and Au(788) do not appear to be related to the different step type of each surface. Photoemission (STM) experiments on Cu (Ag) vicinals with $100%-like and $111%-like step types and similar miscut angles display analogous band dispersion (confinement) (Refs. 4, 6, and 8). 14. Split bands are identical when the second peak becomes stronger at higher photon energies (see Fig. 5). 15. O. Sánchez, J.M. García, P. Segovia, J. Alvarez, A.L. Vázquez de Parga, J.E. Ortega, M. Prietsch, and R. Miranda, Phys. Rev. B 52, 7894 (1995). 16. Photoemission experiments on Au(111) can give different values for E_F-E_0 depending on the measuring conditions. In the most recent high resolution experiments at 300 K it is found E_F –E_0=-0.42 eV [S. LaShell, B.A. McDougall, and E. JensePhys. Rev. Lett. 77, 3419 (1996)]. Considering as well that the infinitely wide terrace like that of Au(788) has a different reconstruction than Au(111), it appears to be a large uncertainty in the correct reference energy for Eq. (1). 17. F. J. García de Abajo et al. (unpublished). 18. M. Henzler, Appl. Phys. (Berlin) 9, 11 (1976). 19. The 50 eV transition corresponds to the primary cone, freeelectron-like final-state band folding at L, whereas the 26 eV one must be related to a secondary cone, free-electron band, as shown in R. Matzdorf, Surf. Sci. Rep. 30, 153 (1998). 20. P. Thiry, D. Chandesris, J. Lecante, C. Guillot, R. Pinchaux, and Y. Petroff, Phys. Rev. Lett. 43, 82 (19799. 21.The quantitative Fourier map requires the line shape analysis of the L-point resonance in Fig. 6(a). In principle, the width of the resonance allows one to obtain directly the penetration depth of the surface state inside the bulk (Ref. 20), shown as an evanescent tail in Fig. 6(b). However, the resonance width is a convolution of the k_z broadening of the surface state and the energy broadening of the final state. Since the latter is a very flat band at 26 eV (Ref. 19), the (unknown) final-state broadening becomes the dominant contribution. In this context, the numerical estimation of the penetration depth of the surface state becomes very unreliable. 22. A similar behavior is found in image states at Cu(111) vicinals, which display and increasing sensitivity to the step barrier potential as they get physically closer to the surface (ef. 7). 23. J.E. Ortega, A. Mugarza, A. Närmann, A. Rubio, S. Speller, A.R. Bachmann, J. Lobo, E.G. Michel, and F.J. Himpsel, Surf. Sci. 482-485, 764 (2001).
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 34libre.pdf
Size:
600.13 KB
Format:
Adobe Portable Document Format

Collections