Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stein-type estimation in logistic regression models based on minimum phi-divergence estimators

dc.contributor.authorMenéndez Calleja, María Luisa
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorPardo Llorente, María del Carmen
dc.date.accessioned2023-06-20T00:20:48Z
dc.date.available2023-06-20T00:20:48Z
dc.date.issued2009-03-01
dc.description.abstractIn this paper we present a study of Stein-type estimators for the unknown parameters in logistic regression models when it is suspected that the parameters may be restricted to a subspace of the parameter space. The Stein-type estimators studied are based on the minimum phi-divergence estimator instead on the maximum likelihood estimator as well as on phi-divergence test statistics.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17392
dc.identifier.doi10.1016/j.jkss.2008.07.003
dc.identifier.issn1226-3192
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S1226319208000872
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42433
dc.issue.number1
dc.journal.titleJournal of the Korean Statistical Society
dc.language.isoeng
dc.page.final86
dc.page.initial73
dc.publisherKorean Statistical Society
dc.relation.projectIDMTM2006-06872
dc.relation.projectIDUCM2007-910707
dc.rights.accessRightsrestricted access
dc.subject.cdu519.233
dc.subject.keywordLogistic regression model
dc.subject.keywordPhi-divergence test statistics
dc.subject.keywordMinimum phi-divergence estimator
dc.subject.keywordGeneral linear hypotheses
dc.subject.keywordStein-type estimation
dc.subject.keywordStatistics.
dc.subject.ucmEstadística aplicada
dc.titleStein-type estimation in logistic regression models based on minimum phi-divergence estimators
dc.typejournal article
dc.volume.number38
dcterms.referencesAli, S. M., & Silvey, S. D. (1966). A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society, Ser. B, 28, 131-142. Baranchik, A. (1970). A family of minimax estimators of the mean of a multivariate normal distribution. Annals of Mathematical Statistics, 41, 642-645. Berger, J. O. (1985). Statistical decision theory and Bayesian analysis (2nd ed.). New York: Springer-Verlag. Cressie, N., & Pardo, L. (2002). In A. H. ElShaarawi, & W. W. Piegorich (Eds.), Encyclopedia of environmetrics: Vol. 3. Phi-divergence statistics (pp. 1551-1555). New York: John Wiley & Sons. Cressie, N. A. C., Pardo, L., & Pardo, M. C. (2003). Size and power considerations for testing loglinear models using phi-divergence test statistics. Statistica Sinica, 13(2), 555-570. Cressie, N., & Read, T. R. C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society, Series B, 46, 440-464. Csiszàr, I. (1963). Eine Informationstheorestiche Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publications of the mathematical Institute of Hungarian Academy of Sciences, Series A, 8, 84-108. Efron, B., & Morris, C. (1973). Stein's estimation rule and its competitors. An empirical approach. Journal of the American Statistical Association, 68, 117-130. Ghosh, M., Hwany, J., & Tsui, K. (1983). Construction of improved estimators in multiparameter estimation for discrete exponential families. Annals of Statistics, 11, 351-376. (Discussion by J.O. Berger, H. Malcolm Hudson and Carl Morris). Hoffmann, K. (2000). Stein estimation: A review.Statistical Papers, 41, 127-158. James, W., & Stein, C. (1961). Estimation with quadratic loss. In Proceedings of the fourth berkeley symposium on mathematical statistics and probability (pp. 361_379). Berkeley, CA: University of California Press. Judge, G. G., & Bock, M. E. (1978). The statistical implications of pretest and stein-rule estimators in econometrics. Amsterdam: North Holland. Liu, I., & Agresti, A. (2005). The analysis of ordered categorical data: An overview and a survey of recent developments. Test, 14(1), 1-73. Menéndez, M. L., Pardo, J. A., & Pardo, L. (2008a). Phi-divergence test statistics for testing linear hypotheses in logistic regression models. Communications in Statistics (Theory and Methods), 37(4), 494-507. Menéndez, M. L., Pardo, L., & Pardo, M. C. (2008b). Preliminary phi-divergence test estimators for linear restrictions in a logistic regression model. Statistical Papers. Pardo, J. A., Pardo, L., & Pardo, M. C. (2005). Minimum phi-divergence estimator in logistic regression model. Statistical Papers, 47, 91-108. Pardo, J. A., Pardo, L., & Pardo, M. C. (2006). Testing in logistic regression models based on phi-divergences measures. Journal of Statistical Planning and Inference, 132, 982-1006. Pardo, L. (2006). Statistical inference based on divergence measures. New York: Chapman & Hall/CRC. Saleh, A. K. Md. E. (2006). Theory of preliminary test and stein-type estimation with applications. Wiley. Sen, P. K. (1986). On the asymptotic distributional risks of shrinkage and preliminary test versions of maximum likelihood estimators. Sankhya, Series A, 48, 354-371. Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proceedings of the third berkeley symposium on mathematical statistics and probability, vol. 1 (pp. 197-206). Berkeley, CA: University of California Press. Vajda, I. (1989). Theory of statistical inference and information. Dordrecht: Kluwer Academic.
dspace.entity.typePublication
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscoverya6409cba-03ce-4c3b-af08-e673b7b2bf58

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PardoLeandro08.pdf
Size:
774.47 KB
Format:
Adobe Portable Document Format

Collections