Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Recursive estimation in linear models with general errors and grouped data: a median-based procedure and related asymptotics

dc.contributor.authorAnido, Carmen
dc.contributor.authorRivero Rodríguez, Carlos
dc.contributor.authorValdés Sánchez, Teófilo
dc.date.accessioned2023-06-20T10:33:25Z
dc.date.available2023-06-20T10:33:25Z
dc.date.issued2003
dc.description.abstractWe introduce in this paper an iterative estimation procedure based on conditional medians valid to fit linear models when, on the one hand, the distribution of errors, assumed to be known, may be general and, on the other, the dependent data stem from different sources and, consequently, may be either non-grouped or grouped with different classification criteria. The procedure requires us at each step to interpolate the grouped data and is similar to the EM algorithm with normal errors. The expectation step has been replaced by a median-based step which avoids doing awkward integration with general errors and, also, we have substituted for the maximisation step, a natural one which only coincides with it when the errors are normally distributed. With these modifications, we have proved that the iterative estimating algorithm converges to a point which is unique and non-dependent on the starting values. Finally, our final estimate, being a Huber type M-estimator, may enjoy good stochastic asymptotic proper-ties which have also been investigated in detail
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20225
dc.identifier.doi10.1016/S0378-3758(02)00114-3
dc.identifier.issn0378-3758
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0378375802001143
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50498
dc.issue.number1
dc.journal.titleJournal of Statistical Planning and Inference
dc.language.isoeng
dc.page.final102
dc.page.initial85
dc.publisherElsevier Science Bv
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordCensored-data
dc.subject.keywordmaximum-likelihood
dc.subject.keywordem algorithm
dc.subject.keywordregression
dc.subject.keyworditerative estimation
dc.subject.keywordmedian-based imputation
dc.subject.keywordgrouped data
dc.subject.keywordlinear models
dc.subject.keywordconvergence rate
dc.subject.keywordasymptotic distributions
dc.subject.keywordconsistency
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleRecursive estimation in linear models with general errors and grouped data: a median-based procedure and related asymptotics
dc.typejournal article
dc.volume.number115
dcterms.referencesChatterjee, S., McLeish, D.L., 1986. Fitting linear regression models to censored data by least squares and maximum likelihood methods. Comm. Statist. Theory Methods 15, 3227–3243. Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39, 1–22. Healy, M.J.R., Westmacott, M., 1956. Missing values in experiments analyzed on automatic computers. Appl. Statist. 5, 203–206. James, I.R., Smith, P.J., 1984. Consistency results for linear regression with censored data. Ann. Statist. 12, 590–600. Little, R.J.A., Rubin, D.B., 1987. Statistical Analysis with Missing Data. Wiley, New York. Orchard, T., Woodbury, M.A., 1972. A missing information principle: theory and applications. Proceedings of the Sixth Berkeley Symposium on Mathematics and Statistical Probability. University of California Press, Berkeley, CA, pp. 697–715. Ritov, Y., 1990. Estimation in linear regression model with censored data. Ann. Statist. 18, 303–328. Schmee, J., Hahn, G.J., 1979. A simple method for regression analysis with censored data. Technometrics 21, 417–432. Tanner, M.A., 1993. Tools for statistical inference. Methods for the Exploration of Posterior Distributions and Likelihood Functions. Springer, Berlin. Wu, C.F.J., 1983. On the convergence of the EM algorithm. Ann. Statist. 11, 95–103.
dspace.entity.typePublication
relation.isAuthorOfPublication57155156-5c76-4da2-9777-5ab79884445c
relation.isAuthorOfPublication.latestForDiscovery57155156-5c76-4da2-9777-5ab79884445c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Teofilo11elsevier.pdf
Size:
171.03 KB
Format:
Adobe Portable Document Format

Collections