On rotation of complex structures

dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-19T13:29:32Z
dc.date.available2023-06-19T13:29:32Z
dc.date.issued2015-01
dc.description.abstractWe put in a general framework the situations in which a Riemannian manifold admits a family of compatible complex structures, including hyperkahler metrics and the Spin-rotations of arxiv:1302.2846. We determine the (polystable) holomorphic bundles which are rotable, i.e., they remain holomorphic when we change a complex structure by a different one in the family.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorship(Spanish) MICINN Project
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29080
dc.identifier.doi10.1016/j.geomphys.2014.01.003
dc.identifier.issn0393-0440
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0393044014000047
dc.identifier.relatedurlhttp://arxiv.org/abs/1307.8000
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33857
dc.journal.titleJournal of geometry and physics
dc.language.isoeng
dc.page.final353
dc.page.initial344
dc.publisherElsevier
dc.relation.projectIDMTM2010-17389
dc.rights.accessRightsopen access
dc.subject.cdu51
dc.subject.keywordHyperkahler manifold
dc.subject.keywordHyperholomorphic bundle
dc.subject.keywordHermitian-Yang-Mills connection
dc.subject.keywordSpin(7)-instanton
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.unesco12 Matemáticas
dc.titleOn rotation of complex structures
dc.typejournal article
dc.volume.number87
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1307.8000v2.pdf
Size:
180.98 KB
Format:
Adobe Portable Document Format

Collections