Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Pricing powered by artificial intelligence: an assessment model for the sustainable implementation of AI supported price functions

dc.contributor.authorErdmann, Anett
dc.contributor.authorYazdani, Morteza
dc.contributor.authorMas, José Manuel
dc.contributor.authorMarín, Cristina
dc.date.accessioned2025-06-02T10:39:49Z
dc.date.available2025-06-02T10:39:49Z
dc.date.issued2024-05-22
dc.description.abstractArtificial Intelligence (AI) in the price management process is being applied in business practice and research to a variety of pricing use cases that can be augmented or automated, providing opportunities as a forecasting tool or for price optimization. However, the complexity of evaluating the technology to prioritize implementation is challenging, especially for small and medium enterprises (SMEs), and guidance is sparse. Which are the relevant stakeholder criteria for a sustainable implementation of AI for pricing purpose? Which type of AI supported price functions meet these criteria best? Theoretically motivated by the hedonic price theory and advances in AI research, we identify nine criteria and eight AI supported price functions (AISPF). A multiple attribute decision model (MADM) using the fuzzy Best Worst Method (BWM) and fuzzy combined compromise solution (CoCoSo) is set up and evaluated by pricing experts from Germany and Spain. To validate our results and model stability, we carried out several random sensitivity analyses based on the weight of criteria exchange. The results suggest accuracy and reliability as the most prominent attribute to evaluate AISPF, while ethical and sustainable criteria are sorted as least important. The AISPF which best meet the criteria are financial prices followed by procurement prices.
dc.description.departmentDepto. de Marketing
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationErdmann, A., Yazdani, M., Mas Iglesias, J. M., & Marin Palacios, C. (2024). Pricing powered by artificial intelligence: An assessment model for the sustainable implementation of AI supported price functions. Informatica, 35(3), 529-556.
dc.identifier.doi10.15388/24-INFOR559
dc.identifier.essn1822-8844
dc.identifier.issn0868-4952
dc.identifier.officialurlhttps://doi.org/10.15388/24-INFOR559
dc.identifier.relatedurlhttps://informatica.vu.lt/journal/INFORMATICA/article/1337/info
dc.identifier.urihttps://hdl.handle.net/20.500.14352/120752
dc.issue.number35
dc.journal.titleInformatica
dc.language.isoeng
dc.page.final556
dc.page.initial529
dc.publisherVilnius University Institute of Data Science and Digital Technologies, Lithuanian Academy of Sciences, Lithuania
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu3
dc.subject.jelA 12
dc.subject.keywordprice management
dc.subject.keywordartificial intelligence
dc.subject.keywordhuman-AI interactions
dc.subject.keywordsustainable AI
dc.subject.keywordmultiple attribute decision model
dc.subject.ucmComercio
dc.subject.unesco53 Ciencias Económicas
dc.titlePricing powered by artificial intelligence: an assessment model for the sustainable implementation of AI supported price functions
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pricing Powered.pdf
Size:
320.74 KB
Format:
Adobe Portable Document Format

Collections