Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Shape as a Cantor completion process

dc.contributor.authorAlonso Morón, Manuel
dc.contributor.authorRomero Ruiz Del Portal, Francisco
dc.date.accessioned2023-06-20T16:53:39Z
dc.date.available2023-06-20T16:53:39Z
dc.date.issued1997
dc.description.abstractLet X and Y be metric compacta, Y embedded in the Hilbert cube Q. For two maps f,g:X→Q the authors define F(f,g):=inf{ε>0:f is homotopic to g in the ε-neighborhood of Y}, and a sequence of maps fk :X→Q, k∈N, is said to be a Cauchy sequence provided for every ε>0 there is a k0∈N such that F(fk,fk′)<ε whenever k,k′≥k 0. Such sequences coincide with the approximative maps of K. Borsuk [Theory of shape, PWN, Warsaw, 1975] and represent shape morphisms from X to Y. The function F is not a pseudometric, but defining d(α,β):=lim k F(fk,gk), where the shape morphisms α,β∈Sh(X,Y) are represented by Cauchy sequences (fk),(gk), the authors prove that (Sh(X,Y),d) becomes a complete zero-dimensional ultrametric space, homeomorphic to a closed subset of the irrationals. Among other things, the authors prove that if two compacta X and Y are of the same shape, then for every compactum Z, the spaces Sh (X,Z) and Sh (Y,Z) are uniformly homeomorphic. In the last section, the authors show, for example, that for X compact and Y∈FANR , the space Sh (X,Y) is countable, give several characterizations of various kinds of movability, and translate their results to Z-sets in Q and sequences of proper maps between their complements.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15606
dc.identifier.citationAlonso Morón, M., Romero Ruiz Del Portal, F. «Shape as a Cantor Completion Process»: Mathematische Zeitschrift, vol. 225, n.o 1, mayo de 1997, pp. 67-86. DOI.org (Crossref), https://doi.org/10.1007/PL00004599.
dc.identifier.doi10.1007/PL00004599
dc.identifier.issn0025-5874
dc.identifier.officialurlhttps//doi.org/10.1007/PL00004599
dc.identifier.relatedurlhttp://www.springerlink.com/content/2hrud9293y1cm3a9/fulltext.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57353
dc.issue.number1
dc.journal.titleMathematische Zeitschrift
dc.language.isoeng
dc.page.final86
dc.page.initial67
dc.publisherSpringer
dc.relation.projectIDPB93-0454-C02-02
dc.rights.accessRightsrestricted access
dc.subject.cdu515.143
dc.subject.cdu515.122
dc.subject.keywordGeometric finiteness theorems
dc.subject.keywordControlled topology
dc.subject.keywordHomotopy types
dc.subject.keywordSpaces
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleShape as a Cantor completion processen
dc.typejournal article
dc.volume.number225
dspace.entity.typePublication
relation.isAuthorOfPublication95bd8189-3086-4e0f-94f6-06dee8c8f675
relation.isAuthorOfPublication5c796e83-3a3a-466d-821f-de3280112781
relation.isAuthorOfPublication.latestForDiscovery5c796e83-3a3a-466d-821f-de3280112781

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
25.pdf
Size:
225.45 KB
Format:
Adobe Portable Document Format

Collections