Present-day heat flow model of Mars

dc.contributor.authorMartínez Parro, Laura
dc.contributor.authorJiménez Díaz, Alberto
dc.contributor.authorMansilla, Federico
dc.contributor.authorRuiz Pérez, Javier
dc.date.accessioned2023-06-17T22:29:40Z
dc.date.available2023-06-17T22:29:40Z
dc.date.issued2017-04-03
dc.description.abstractUntil the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m−2, with an average value of 19 mW m−2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7–0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. H2020
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipMinisterio de Educación, Cultura y Deporte
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/47700
dc.identifier.doihttps:// 10.1038/srep45629
dc.identifier.issnISSN: 2045-2322 ; ESSN: 2045-2322
dc.identifier.officialurlhttps://www.nature.com/articles/srep45629
dc.identifier.relatedurlhttps://www.nature.com/srep/publish
dc.identifier.urihttps://hdl.handle.net/20.500.14352/18563
dc.journal.titleScientific Reports
dc.language.isoeng
dc.page.final9
dc.page.initial1
dc.publisherNature Publishing Group
dc.relation.projectIDUPWARDS (633127)
dc.relation.projectIDAMARTE (CGL2014-59363-P)
dc.relation.projectIDFPU2014
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu551.2/.3
dc.subject.ucmGeodinámica
dc.subject.unesco2507 Geofísica
dc.titlePresent-day heat flow model of Mars
dc.typejournal article
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublication4935ae2a-48df-44f7-a6f1-3bab9423991d
relation.isAuthorOfPublicationb0242abd-d40a-4c55-83e1-c44f92c5cc1e
relation.isAuthorOfPublication.latestForDiscoveryb0242abd-d40a-4c55-83e1-c44f92c5cc1e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Present-day heat flow model of Mars.pdf
Size:
1.19 MB
Format:
Adobe Portable Document Format

Collections