Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Hilbert space of wormholes

dc.contributor.authorGaray Elizondo, Luis Javier
dc.date.accessioned2023-06-20T20:06:20Z
dc.date.available2023-06-20T20:06:20Z
dc.date.issued1993-08-15
dc.description© 1993 The American Physical Society. I wish to thank Pedro Gonzalez-Diaz, Guillermo Mena Marugan and Peter Tinyakov for their valuable comments on the manuscript. I also thank Instituto de Matematicas y Fisica Fundamental, C.S.I.C., for hospitality. This work was supported by DGICYT under Contract No. PB91-0052 and by a Basque Country Grant. The ESA IUE Observatory is affiliated with the Astrophysics Division, Space Science Department, ESTEC
dc.description.abstractWormhole boundary conditions for the Wheeler-DeWitt equation can be derived from the path integral formulation. It is proposed that the wormhole wave function must be square integrable in the maximal analytic extension of minisuperspace. Quantum wormholes can be invested with a Hilbert-space structure, the inner product being naturally induced by the minisuperspace metric, in which the Wheeler-DeWitt operator is essentially self-adjoint. This provides us with a kind of probabilistic interpretation. In particular, giant wormholes will give extremely small contributions to any wormhole state. We also study the whole spectrum of the Wheeler-DeWitt operator and its role in the calculation of Green's functions and effective low-energy interactions.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGICYT
dc.description.sponsorshipBasque Country
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30114
dc.identifier.doi10.1103/PhysRevD.48.1710
dc.identifier.issn0556-2821
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.48.1710
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.relatedurlhttp://arxiv.org/pdf/gr-qc/9306002v1.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59559
dc.issue.number4
dc.journal.titlePhysical review D
dc.language.isoeng
dc.page.final1721
dc.page.initial1710
dc.publisherAmer Physical Soc
dc.relation.projectIDPB91-0052
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordQuantum wormholes
dc.subject.keywordUniverse
dc.subject.keywordState
dc.subject.keywordGauge
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleHilbert space of wormholes
dc.typejournal article
dc.volume.number48
dcterms.references[1] S. W. Hawking, Phys. Rev. D 37, 904 (1988). [2] S. Coleman, Nucl. Phys. B310, 643 (1988). [3] L. J. Garay and J. Garcia-Bellido, Nucl. Phys. B (to be published) . [4] S. W. Hawking and D. N. Page, Phys. Rev. D 42, 2655 (1990). [5] L. M. Campbell and L. J. Garay, Phys. Lett. B 254, 49 (1991). [6] L. J. Garay, Phys. Rev. D 44, 1059 (1991). [7] A. Vilenkin, Phys. Rev. D 37, 888 (1988). [8] P. Puig Adam, Ecuaciones Diferenci ale (Biblioteca Matematica, Madrid, 1955). [9] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Spacetime (Cambridge University Press, Cambridge, England, 1973). [10] M. Reed and B. Simon, Methods of Modern Mathemati cal Physics I Functiona. l Analysis (Academic, New York, 1972). [11] H. F. Dowker, Nucl. Phys. B331, 194 (1990). [12] A. Lyons, Nucl. Phys. B324, 253 (1989). [13] H. F. Dowker and R. LaHamme, Nucl. Phys. B366, 209 (1991). [14] A. Zhuk, Phys. Rev. D 45, 1192 (1992). [15] C. Teitelboim, Phys. Rev. D 28, 297 (1983). [16] J.J. Halliwell, Phys. Rev. D 38, 2468 (1988). [17] J. J. Halliwell and J. B. Hartle, Phys. Rev. D 43, 1170 (1991). [18] V. N. Gribov, Nucl. Phys. B139, 1 (1978). [19] P. Ramond, Field Theory: A Modern Primer, 2nd ed. (Addison-Wesley, New York, 1990). [20] P. F. Gonzalez-Diaz, Nucl. Phys. B351, 767 (1991). [21] S. W. Hawking and D. N. Page, Nucl. Phys. B264, 185 (1986). [22] A. Galindo and P. Pascual, Mecanica Cuantica (Eudema, Madrid, 1989). [23] Handbook of Mathematical Functions with Formu las, Graphs and Mathematical Tables, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1965). [24] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, London, 1965). [25] S. B. Giddings and A. Strominger, Nucl. Phys. B306, 890 (1988)
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay47.pdf
Size:
530.39 KB
Format:
Adobe Portable Document Format

Collections