Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Leaf dry matter content is better at predicting aboveground net primary production than specific leaf area

dc.contributor.authorSmart, Simon Mark
dc.contributor.authorGlanville, Helen Catherine
dc.contributor.authorBlanes, María del Carmen
dc.contributor.authorMercado, Lina María
dc.contributor.authorEmmett, Bridget Anne
dc.contributor.authorJones, David Leonard
dc.contributor.authorCosby, Bernard Jackson
dc.contributor.authorMarrs, Robert Hunter
dc.contributor.authorButler, Adam
dc.contributor.authorMarshall, Miles Ramsvik
dc.contributor.authorReinsch, Sabine
dc.contributor.authorHerrero-Jáuregui, Cristina
dc.contributor.authorHodgson, John Gavin
dc.date.accessioned2023-06-17T22:00:18Z
dc.date.available2023-06-17T22:00:18Z
dc.date.issued2017-06
dc.description.abstract1. Reliable modelling of above-ground net primary production (aNPP) at fine resolution is a significant challenge. A promising avenue for improving process models is to include response and effect trait relationships. However, uncertainties remain over which leaf traits are correlated most strongly with aNPP. 2. We compared abundance-weighted values of two of the most widely used traits from the leaf economics spectrum (specific leaf area and leaf dry matter content) with measured aNPP across a temperate ecosystem gradient. 3. We found that leaf dry matter content (LDMC) as opposed to specific leaf area (SLA) was the superior predictor of aNPP (R2 = 0 55). 4. Directly measured in situ trait values for the dominant species improved estimation of aNPP significantly. Introducing intraspecific trait variation by including the effect of replicated trait values from published databases did not improve the estimation of aNPP. 5. Our results support the prospect of greater scientific understanding for less cost because LDMC is much easier to measure than SLA.
dc.description.departmentDepto. de Biodiversidad, Ecología y Evolución
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipUK Natural Environment Research Council Macronutrients Program
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43819
dc.identifier.doi10.1111/1365-2435.12832
dc.identifier.issn0269-8463, ESSN: 1365-2435
dc.identifier.officialurlhttp://onlinelibrary.wiley.com/doi/10.1111/1365-2435.12832/full
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17916
dc.issue.number6
dc.journal.titleFunctional Ecology
dc.language.isoeng
dc.page.final1344
dc.page.initial1336
dc.publisherWiley
dc.relation.projectIDGrant Number: NE/J011991/1
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsrestricted access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu574.4(41)
dc.subject.cdu581.526(41)
dc.subject.keywordBayesian modelling
dc.subject.keywordEcosystem function
dc.subject.keywordGlobal change
dc.subject.keywordIntraspecific variation
dc.subject.keywordMeasurement error
dc.subject.ucmEcología (Biología)
dc.subject.unesco2401.06 Ecología animal
dc.titleLeaf dry matter content is better at predicting aboveground net primary production than specific leaf area
dc.typejournal article
dc.volume.number31
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Smart, S. M. -2017-Leaf dry matter.pdf
Size:
438.17 KB
Format:
Adobe Portable Document Format

Collections