The riddle of ball lightning : A review

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Hindawi Publishing Corporation
Google Scholar
Research Projects
Organizational Units
Journal Issue
One of the most intriguing and enduring scientific challenges is to find an explanation for ball lightning, the shining fireballs that sometimes appear near lightning strokes. Although many theoretical ideas have been proposed and much experimental work has been performed, there is not yet an accepted explanation of their amazing properties. They are surprisingly stable, lasting up to 10 s, even minutes in some rare cases. By night, their appearance can be spectacular, but their brilliance is just similar to that of a home electric bulb. Most of the time, their motion is smooth and horizontal, but it can also be erratic and chaotic; they can penetrate indoors through window panes. We review here some of the most discussed approaches, including both theoretical models to find an explanation as well as experimental efforts to reproduce them in the laboratory. We distinguish between chemical and physical models, depending on whether their stability is mainly based on their chemical composition or on purely physical phenomena involving electromagnetic fields and plasmas.
© 2006 Donoso, J.M., Trueba, J.L., and Rañada, A.F. This research has been partially supported by the Spanish Ministry of Science and Technology, under the project grant BFM2003-05453.
Unesco subjects
1. Singer, S., (1971), The Nature of Ball Lightning, Plenum Press, New York. 2. Barry, J.D., (1980), Ball Lightning and Bead Lightning, Plenum Press, New York. 3. Ohtsuki, Y.H., Ed., (1989), The Science of Ball Lightning, World Scientific, Singapore. 4. Stenhoff, M., (1999), Ball Lightning, An Unsolved Problem in Atmospheric Physics, Kluwer, Dordrecht. 5. Uman, M.A., (1984), Lightning, Dover, New York (1986), All About Lightning, Dover, New York. 6. Dijkhuis, G.C., (1992), Proceedings of the Fourth TORRO Conference: Ball Lightning (Oxford), Tornado and Storm Research Organisation (TORRO), Richmond, Surrey, U.K. 7. Singer, S., (2002), Ball lightning: the scientific effort., Philos. Trans. R. Soc. Lond. A, 360, 5–9. 8. Selvaggi, G., Monstrey, S., von Heimburg, D., Hamdi, M., Van Landuyt, K., and Blondeel, P., (2003), Ball lightning burn, Ann. Plast. Surg., 50, 541–544. 9. Edlich, R.F., Farinholt, H.A., Winters, K.L., Britt, L.D., Long, W.B., (2005), Modern concepts of treatment and prevention of lightning injuries, J. Long Term Eff. Med. Implants, 15, 185–196. 10. Boichenko, A.M., (1999), Ball lightning with a lifetime t < 1 s., Tech. Phys., 44, 1247. 11. Sturrock, P.A., (1994), Plasma Physics. An Introducction of the Theory of Astrophysical, Geophysical and Laboratory Plasmas, Cambridge University Press. 12. Prevenslik, T., (2001), A unified theory for ‘sprites’, St. Elmo’s fire and ball lightning, J. Meteorol., 26, 204. 13. Finkelstein, D., Rubinstein, J., (1964), Ball lightning, Phys. Rev., 135, 390. 14. Turner, D.J., (1998), Ball lightning and other meteorological phenomena, Phys. Rep., 293, 1–60. 15. Smirnov, B.M., (1987), The properties and the nature of ball lightning, Phys. Rep., 152, 177–226. 16. Kukushkin, A.B., Rantsev-Kartinov, V.A., (2001), Observations of Long-Lived Microdust-Assembled Skeletons in High-Current Laboratory Discharges. Extrapolation to Ball Lightning, Abstracts of the 2001 International Symposium on Ball Lightning (and references cited therein). 17. Kukushkin, A.B., Rantsev-Kartinov, V.A., (2004), A Hybrid of Aerogel and Plasma Models of Ball Lightning: An Inductive Storage Wildly Formed by a Nanotube-Assembled Skeleton, 31st EPS Conference on Plasma Phys, London, ECA Vol. 28G, P-4.089. 18. Abrahamson, J., Dinniss, J., (2000), Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil, Nature, 403, 519–521. 19. Abrahamson, J., Marshall, J., (2002), Permanent electric dipoles on gas-suspended particles and the production of filamentary aggregates, J. Electrostat., 55, 43–63. 20. Abrahamson, J., (2002), Ball lightning from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals, Philos. Trans. R. Soc. Lond. A, 360, 61–88. 21. Bychkov, V.L., Bychkov, A.V., Stadnik, S.A., (1996), Polymer balls in discharge plasma, Phys. Scr., 53, 749–759. 22. Bychkov, V.L., (2002), Polymer-composite ball lightning, Philos. Trans. R. Soc. Lond. A, 360, 37–60 and references therein. 23. Kikuchi, H., (1996), Roles of dust or object perturbing an electric cusp in electric reconnection and consequent electric discharge or lightning, Phys. Chem. Earth, 21, 549. 24. Turner, D.J., (2002), The fragmented science of ball lightning (with comment), Philos. Trans. R. Soc. Lond. A, 360, 107–152. 25. Sanduloviciu, M., Lozneanu, E., (2000), Ball lightning as a self-organization phenomenon, J. Geophys. Res., 105, 4719. 26. Ohtsuki, Y., Ofuruton, H., (1991), Plasma fireballs formed by microwave interference in air, Nature, 350, 139. 27. Brandenburg, J.E., Kline, J.F, (1998), Experimental investigation of large-volume PIA plasmas at atmospheric pressure, IEEE Trans. Plasma Sci., 26, 145. 28. Tanaka, K., Tanaka, M., (1997), Is ball lightning “Anderson Localization”?, Appl. Phys. Lett., 71, 3793. 29. Chandrasekhar, S., Fermi, E., (1953), Problems of gravitational stability in the presence of a magnetic field, Ap. J., 118, 116. 30. Shafranov, V.D., (1966), Reviews of Plasma Physics, Vol. 2, M.A. Leontovich, Consultants Bureau, New York. 31. Marsh, G., (1996), Force-Free Magnetic Fields: Solutions, Topology and Applications, World Scientific, Singapore. 32. Wua, H., Oakes, M.E., (1991), Magnetohydrodynamics equilibrium of a self-confined elliptical plasma ball, Phys. Fluids B, 3, 2113. 33. Faddeev, L., Niemi, A.J., (2000), Magnetic geometry and the confinement of electrically conducting plasmas, Phys. Rev. Lett., 85, 3416. 34. Faddeev, L., Freyhult, L., Niemi, A.J., Rajan, P., (2002), Shafranov’s virial theorem and magnetic plasma confinement, J. Phys. A Math. Gen., 35, 133. 35. Bergström, A., (1973), Electromagnetic theory of strong interaction, Phys. Rev. D, 8, 4394. 36. Shmatov, M.L., (2003), New model and estimation of the danger of ball lightning, J. Plasma Phys., 69, 507. 37. Rañada, A.F., Trueba, J.L., (1996), Ball lightning an electromagnetic knot?, Nature, 383, 32. 38. Rañada, A.F., Soler, M., Trueba, J.L., (1998), A model of ball lightning as a magnetic knot with linked streamers, J. Geophys. Res., 103, 23309–23313. 39. Kaiser, R., Lortz, D., (1995), Ball lightning as an example of magnetohydrodynamic equilibrium, Phys. Rev. E, 52, 3034–3044. 40. Bogoyavlenskij, O.I., (2002), Symmetry transforms for ideal magnetohydrodynamics equilibria, Phys. Rev. E, 66, 056410. 41. Lowke, J.J., (1996), A theory of ball lightning as an electric discharge, J. Phys. D Appl. Phys., 29, 1237–1244. 42. Lowke, J.J., (2004), On the physics of lightning, IEEE Trans. Plasma Sci., 32, 4–17. 43. Endean,V.G., (1993), Spinning electric dipole model of ball lightning, IEEE Proc. A, 140, 474–478. 44. Mesenyashin, A.I., (1991), Electrostatic and bubble nature of ball lightning, Appl. Phys. Lett., 58, 2713–2715. 45. Mesenyashin, A.I., (1995), Spherical formations in the atmosphere as a physical phenomenon, J. Electrostat., 36, 139–150. 46. Natyaganov, V.L., (2003), An electro capillary eddy model of ball lightning, Dokl. Phys., 48, 319–322. 47. Nikitin, A.I., (1999), The Dynamic Capacitor Model of Ball Lightning, Proc. of 6th International Symposium on Ball Lightning (ISBL99), Antwerp, Belgium. pp. 91–95. 48. Torchigin, V.P., (2003), On the nature of ball lightning, Dokl. Phys., 48, 108–111. 49. Torchigin, V.P., Torchigin, A.V., (2004), Behavior of self-confined spherical layer of light radiation in the air atmosphere, Phys. Lett. A, 328, 189–195. 50. Torchigin, V.P., Torchigin, A.V., (2005), Features of ball lightning stability, Eur. Phys. J. D, 32, 383–389. 51. Fredkin, D.R., Mayergoyz, I.D., (2003), Resonant behavior of dielectric objects (electrostatic resonances), Phys. Rev. Lett., 91, 253902. 52. Mayergoyz, I.D., Fredkin, D.R., Zhang, Z., (2005), Electrostatic (plasmon) resonances in nanoparticles, Phys. Rev. B, 72, 155412. 53. Gillman, J.J., (2003), Cohesion in ball lightning, Appl. Phys. Lett., 83, 2283–2284. 54. Conde, L., León, L., (1994), Multiple double layer in a glow dischargue, Phys. Plasmas, 1, 1171. 55. Pohoata, V., Popa, G., Schittwieser, R., Ionita, C., Cercek, M., (2003), Properties and control of an anode double layer oscillations and related phenomena, Phys. Rev. E, 68, 016405. 56. Alexeff, I., Parameswaran, S., Thiayagrajan, M., Grace, M., (2005), An observation of synthetic ball lightning, IEEE Trans. Plasma Sci., 33(2), 498–499. 57. Alexeff, I., Rader, M., (1992), Observation of closed loops in high-voltage discharges: a possible precursor of magnetic flux trapping, IEEE Trans. Plasma Sci., 20(6), 669-671. 58. Alexeff, I., Rader, M., (1995), Possible precursors of ball lightning - observation of closed loops in high-voltage discharges, Fusion Technol., 27, 271. 59. Koloc, P., ISBL89 and comments of Reece Roth, J., (1997), Ball lightning: what nature is trying to tell fusion community, In Current Trends in International Fusion Research, Panarella, E., Ed. Plenum Press, New York. 60. Chen, C., Pakter, R., Seward, D.C., (2001), Equilibrium and stability properties of self-organized electron spiral toroids, Phys. Plasmas, 8, 4441–4449. 61. Avramenko, R.F., Nikolaeva, V.I., Poskacheeva, L.P.,(1994), Ball Lightning in Laboratory: A Collection of Articles, Khimiya, Moscow. 62. Dijkhuis, G.C., Ed. (1999) Proceedings of the 6th International Symposium on Ball Lightning (ISBL99). Antwerp, Belgium. 63. Shavanov, G.D., (2002), The optical properties of long-lived luminous formations, Tech. Phys. Lett., 28, 164–166. 64. Emelin, S.E., Semenov, V.S., Bychkov, V.L., Belisheva, N.K., Kovshik, A.P.,, (199), Some objects formed in the interaction of electrical discharges with metals and polymers, Tech. Phys., 42, 269–277. 65. Emelin, S.E., Pirozerski, A.L., Skvortsov, G.E., Bychkov, V.L., (2002), Long-living plasma formations arising from metal wires burning, Preprint,; See also for more images. 66. Egorov, A.I., Stepanov, S.I., (2002), Long-lived plasmoids produced in humid air as analogues of ball lightning, Tech. Phys., 47, 1584–1586. 67. Tsytovich, V.N., (1998), One-dimensional self-organised structures in dusty plasmas, Aust. J. Phys., 51, 763–834. 68. Smirnov, B.M., (1993), Physics of ball lightning, Phys. Rep., 224, 151. 69. Tsui, K.H., (2001), Force-free field model of ball lightning, Phys. Plasmas, 8, 687–689. 70. Tsui, K.H., (2003), Ball lightning as a magnetostatic spherical force-free plasmoid, Phys. Plasmas, 10, 4112–4117. 71. Moffatt, H.K., (1969), The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 117. 72. Moffatt, H.K., (2000), Vortex and magneto-dynamics. A topological perspective in Mathematical Physics, Imperial College, London. 73. Rañada, A.F., (1992), On the magnetic helicity, Eur. J. Phys., 13, 7076. 74. Trueba, J.L., Rañada, A.F., (1996) The electromagnetic helicity, Eur. J. Phys., 17, 141. 75. Callebaut, D.K., (2004), Energy Storage by Force-Free Magnetic Fields in the Initial Phase of Ball Lightning. 8th International Symposium on Ball Lightning,(ISBL04). 76. Trubnikov, B.A., (2002), Current filaments in plasmas, Plasma Phys. Rep., 28, 312–326. 77. Vlasov, V.P., Trubnikov, B.A., (2003), Quasi-stability of a plasma bicylinder, Tech. Phys., 48, 858–865. 78. Oliveira, S.R., Tajima, T., (1995), Generalized relaxation theory and vortices in plasma, Phys. Rev. E, 52, 4287–4293. 79. Chandrasekhar, S., Woltjer, L., (1958), On force-free magnetic fields, Proc. Natl. Acad. Sci. U.S.A., 44, 285. 80. Gekelman, W., Maggs, J.E., Pfister, H., (1992), Experiments on the interaction of current channels in a laboratory plasma: relaxation to force-free state, IEEE Trans. Plasma Sci., 20, 614–621. 81. Rañada, A.F., Soler, M., Trueba, J.L., (2000), Ball lightning as a force-free magnetic knot, Phys. Rev., 62, 7181–7190. 82. Rañada, A.F., (1992), Topological electromagnetism, J. Phys. A Math Gen., 25, 1621–1641. 83. Rañada, A.F., Trueba, J.L., (1995), Electromagnetic knots, Phys. Lett. A, 202, 337. 84. Taylor, J.B., (1974), Relaxation of toroidal plasma and generation of reverse magnetic fields, Phys. Rev. Lett., 33, 1139. 85. Taylor, J.B., (1986), Relaxation and magnetic reconnection in plasmas, Rev. Mod. Phys., 58, 741. 86. Yoshida, Z., Ohsaki, S., Ito, A., Mahajan, S.M., (2003), Stability of Beltrami flows, J. Math. Phys., 44, 2168. 87. Cheviakov, A.F., (2005), Analytical 3-dimensional plasma equilibria, Topol. Appl., 152, 157–173. 88. Cheviakov, A.F., (2005), Construction of exact plasma equilibrium solutions with different geometries, Phys. Rev. Lett., 94, 16. 89. Rañada, A.F., Trueba, J.L., Donoso, J.M., (2005), Ball lightning. In Encyclopedia of Nonlinear Science, Scott, A.,Ed. Fitzroy Dearborn, London. p. 39. 90. Donoso, J.M., Salgado, J.J., Soler, M., (2005), Non linear Fokker–Planck integral propagator for plasma kinetic coefficients, J. Phys. A Math. Gen., 38, 9145–9158. 91. Arrayás, M., Ebert, U., Hundsdorfer, W., (2002), Spontaneous branching of anode-directed streamers between planar electrodes, Phys. Rev. Lett., 88, 174502. 92. Liu, N., Pasko, V.P., (2004), Effects of photoionization on propagation and branching of positive and negative streamers in sprites, J. Geophys. Res., 109, 1–17. 93. Arrayás, M., Fontelos, M.A., Trueba, J.L., (2005), On the mechanism of branching in negative ionization fronts, Phys. Rev. Lett., 95, 165001.