Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Symmetric Airy beams

dc.contributor.authorVaveliuk, Pablo
dc.contributor.authorLencina, Alberto Germán
dc.contributor.authorRodrigo Martín-Romo, José Augusto
dc.contributor.authorMartínez Matos, Óscar
dc.date.accessioned2023-06-19T13:24:16Z
dc.date.available2023-06-19T13:24:16Z
dc.date.issued2014-04-15
dc.description© 2014 Optical Society of America. Financial support from the SENAI-DR/Bahia, Brazil, and the Spanish MEC under project TEC 2011-23629 is acknowledged. P. V. acknowledges a PQ fellowship from CNPq (Brazil).
dc.description.abstractIn this Letter a new class of light beam arisen from the symmetrization of the spectral cubic phase of an Airy beam is presented. The symmetric Airy beam exhibits peculiar features. It propagates at initial stages with a single central lobe that autofocuses and then collapses immediately behind the autofocus. Then, the beam splits into two specular off-axis parabolic lobes like those corresponding to two Airy beams accelerating in opposite directions. Its features are analyzed and compared to other kinds of autofocusing beams; the superposition of two conventional Airy beams having opposite accelerations (in rectangular coordinates) and also to the recently demonstrated circular Airy beam (in cylindrical coordinates). The generation of a symmetric Airy beam is experimentally demonstrated as well. Besides, based on its main features, some possible applications are also discussed.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipServiço Nacional de Aprendizagem Industrial (SENAI-DR/BA), Bahia, Brasil
dc.description.sponsorshipMinisterio de Educación y Ciencia (MEC), España
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25748
dc.identifier.doi10.1364/OL.39.002370
dc.identifier.issn0146-9592
dc.identifier.officialurlhttp://dx.doi.org/10.1364/OL.39.002370
dc.identifier.relatedurlhttp://www.opticsinfobase.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33560
dc.issue.number8
dc.journal.titleOptics Letters
dc.language.isoeng
dc.page.final2373
dc.page.initial2370
dc.publisherAlan E. Willner, University of Southern California
dc.relation.projectIDTEC 2011-23629
dc.relation.projectIDPQ fellowship CNPq (Brasil)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordAbruptly Autofocusing Waves
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleSymmetric Airy beams
dc.typejournal article
dc.volume.number39
dcterms.references1. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). 2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007). 3. Y. Kaganovsky and E. Heyman, Opt. Express 18, 8440 (2010). 4. Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen and R. Morandotti, eds., Vol. 170 of Springer Series in Optical Sciences (Springer, 2013), pp. 1–46. 5. M. A. Bandres, I. Kaminer, M. S. Mills, B. M. Rodrguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, Opt. Phot. News 24(6), 30 (2013). 6. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010). 7. I. D. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt. Lett. 36, 1890 (2011). 8. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, Phys. Rev. A 85, 023828 (2012). 9. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, Opt. Lett. 36, 1842 (2011). 10. I. D. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 3675 (2011). 11. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, Nat. Commun. 4, 2622 (2013). 12. Ch.-Y. Hwang, D. Choi, K.-Y. Kim, and B. Lee, Opt. Express 18, 23504 (2010). 13. All the equations are given for one transverse dimension. However, the extension to two transverse dimensions is straightforward because of the rectangular symmetry. 14. I. M. Besieris and A. M. Shaarawi, Opt. Lett. 32, 2447 (2007). 15. P. Vaveliuk and O. Martinez Matos, Opt. Express 20, 26913 (2012). 16. J. Kasparian and J.-P. Wolf, J. Eur. Opt. Soc. (Rapid Publications) 4, 09039 (2009). 17. A. Salandrino and D. N. Christodoulides, Physics 4, 69 (2011). 18. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999). 19. J. A. Rodrigo, T. Alieva, A. Cámara, O. Martínez-Matos, P. Cheben, and M. L. Calvo, Opt. Express 19, 6064 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos31libre.pdf
Size:
460.21 KB
Format:
Adobe Portable Document Format

Collections