Symmetric Airy beams
dc.contributor.author | Vaveliuk, Pablo | |
dc.contributor.author | Lencina, Alberto Germán | |
dc.contributor.author | Rodrigo Martín-Romo, José Augusto | |
dc.contributor.author | Martínez Matos, Óscar | |
dc.date.accessioned | 2023-06-19T13:24:16Z | |
dc.date.available | 2023-06-19T13:24:16Z | |
dc.date.issued | 2014-04-15 | |
dc.description | © 2014 Optical Society of America. Financial support from the SENAI-DR/Bahia, Brazil, and the Spanish MEC under project TEC 2011-23629 is acknowledged. P. V. acknowledges a PQ fellowship from CNPq (Brazil). | |
dc.description.abstract | In this Letter a new class of light beam arisen from the symmetrization of the spectral cubic phase of an Airy beam is presented. The symmetric Airy beam exhibits peculiar features. It propagates at initial stages with a single central lobe that autofocuses and then collapses immediately behind the autofocus. Then, the beam splits into two specular off-axis parabolic lobes like those corresponding to two Airy beams accelerating in opposite directions. Its features are analyzed and compared to other kinds of autofocusing beams; the superposition of two conventional Airy beams having opposite accelerations (in rectangular coordinates) and also to the recently demonstrated circular Airy beam (in cylindrical coordinates). The generation of a symmetric Airy beam is experimentally demonstrated as well. Besides, based on its main features, some possible applications are also discussed. | |
dc.description.department | Depto. de Óptica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Serviço Nacional de Aprendizagem Industrial (SENAI-DR/BA), Bahia, Brasil | |
dc.description.sponsorship | Ministerio de Educación y Ciencia (MEC), España | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25748 | |
dc.identifier.doi | 10.1364/OL.39.002370 | |
dc.identifier.issn | 0146-9592 | |
dc.identifier.officialurl | http://dx.doi.org/10.1364/OL.39.002370 | |
dc.identifier.relatedurl | http://www.opticsinfobase.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33560 | |
dc.issue.number | 8 | |
dc.journal.title | Optics Letters | |
dc.language.iso | eng | |
dc.page.final | 2373 | |
dc.page.initial | 2370 | |
dc.publisher | Alan E. Willner, University of Southern California | |
dc.relation.projectID | TEC 2011-23629 | |
dc.relation.projectID | PQ fellowship CNPq (Brasil) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 535 | |
dc.subject.keyword | Abruptly Autofocusing Waves | |
dc.subject.ucm | Óptica (Física) | |
dc.subject.unesco | 2209.19 Óptica Física | |
dc.title | Symmetric Airy beams | |
dc.type | journal article | |
dc.volume.number | 39 | |
dcterms.references | 1. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007). 2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007). 3. Y. Kaganovsky and E. Heyman, Opt. Express 18, 8440 (2010). 4. Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen and R. Morandotti, eds., Vol. 170 of Springer Series in Optical Sciences (Springer, 2013), pp. 1–46. 5. M. A. Bandres, I. Kaminer, M. S. Mills, B. M. Rodrguez-Lara, E. Greenfield, M. Segev, and D. N. Christodoulides, Opt. Phot. News 24(6), 30 (2013). 6. N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045 (2010). 7. I. D. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt. Lett. 36, 1890 (2011). 8. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, Phys. Rev. A 85, 023828 (2012). 9. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, Opt. Lett. 36, 1842 (2011). 10. I. D. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 3675 (2011). 11. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, Nat. Commun. 4, 2622 (2013). 12. Ch.-Y. Hwang, D. Choi, K.-Y. Kim, and B. Lee, Opt. Express 18, 23504 (2010). 13. All the equations are given for one transverse dimension. However, the extension to two transverse dimensions is straightforward because of the rectangular symmetry. 14. I. M. Besieris and A. M. Shaarawi, Opt. Lett. 32, 2447 (2007). 15. P. Vaveliuk and O. Martinez Matos, Opt. Express 20, 26913 (2012). 16. J. Kasparian and J.-P. Wolf, J. Eur. Opt. Soc. (Rapid Publications) 4, 09039 (2009). 17. A. Salandrino and D. N. Christodoulides, Physics 4, 69 (2011). 18. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999). 19. J. A. Rodrigo, T. Alieva, A. Cámara, O. Martínez-Matos, P. Cheben, and M. L. Calvo, Opt. Express 19, 6064 (2011). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | b6643c3d-f635-48d3-a642-922a4b2e595c | |
relation.isAuthorOfPublication.latestForDiscovery | b6643c3d-f635-48d3-a642-922a4b2e595c |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- Martinez-Matos31libre.pdf
- Size:
- 460.21 KB
- Format:
- Adobe Portable Document Format