Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Thermally induced modifications on bonding configuration and density of defects of plasma deposited SiOx : H films

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.contributor.authorSan Andrés Serrano, Enrique
dc.date.accessioned2023-06-20T19:00:40Z
dc.date.available2023-06-20T19:00:40Z
dc.date.issued2002-08-15
dc.description© 2002 American Institute of Physics. The authors acknowledge CAI de Implantación Iónica (UCM) for technical support and C.A.I. de Espectroscopía (UCM) for the availability of the FTIR spectrometer. This work was partially supported by the Spanish CICYT, under Contract No. TIC 01-1253.
dc.description.abstractThe bonding configuration, hydrogen evolution, and defect content of rapid thermally annealed (RTA) SiOx:H films of different compositions were studied. Infrared absorption measurements showed that all the hydrogen present in the films is lost at annealing temperatures below 600 degreesC without any change in the oxygen to silicon ratio of the films. The activation energy of the hydrogen release is in the 0.21-0.41 eV range independently of film composition, suggesting that the process occurs via network bond reactions. For annealing temperatures higher than 700 degreesC, a change in the Si-O-Si stretching wave number from the initial unannealed value to the 1070-1080 cm(-1) range was promoted, independently of the initial film composition. Electron spin resonance measurements showed that all the films contain two type of bulk paramagnetic defects: the E-' center (.Si=O-3) and the silicon dangling bond center (.Si=Si-3). The RTA process promotes a general decrease of defect concentration for annealing temperatures below 400 degreesC. At higher temperatures, E' center disappears, and the .Si=Si-3 center increases its concentration up to the 10(17)-10(18) cm(-3) range. This suggests that the RTA at higher temperatures promotes the formation of a high-quality, almost defect-free, SiO2 matrix in which highly defective Si nanocrystals are also formed, where the .Si=Si-3 centers are located.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish CICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26214
dc.identifier.doi10.1063/1.1495068
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.1495068
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59101
dc.issue.number4
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.page.final1913
dc.page.initial1906
dc.publisherAmerican Institute of Physics
dc.relation.projectIDTIC 01-1253
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordElectron-Paramagnetic-Resonance
dc.subject.keywordHydrogenated Amorphous-Silicon
dc.subject.keywordCyclotron-Resonance
dc.subject.keywordThin-Films
dc.subject.keywordTemperature
dc.subject.keywordInterface
dc.subject.keywordPhotoluminescence
dc.subject.keywordNanocrystals
dc.subject.keywordVibrations
dc.subject.keywordEvolution.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleThermally induced modifications on bonding configuration and density of defects of plasma deposited SiOx : H films
dc.typejournal article
dc.volume.number92
dcterms.references1) B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkle, and G. Lucovsky, J. Vac. Sci. Technol. B, 16, 2171 (1998). 2) K. Furukawa, Y. Liu, H. Nakashima, D. Gao, K. Uchino, K. Muraoka, and H. Tsuzuki, Appl. Phys. Lett., 72, 725 (1998). 3) G. B. Alers, D. J. Werder, Y. Chabal, H. C. Lu, E. P. Gusev, E. Garfunkel, T. Gustafsson, and R. S. Urdahl, Appl. Phys. Lett., 73, 1517 (1998). 4) H.-S. Kim, IEEE Electron Device Lett., 18, 465 (1997). 5) Q. X. Jia, J. L. Smith, L. H. Chang, and W. A. Anderson, Philos. Mag. B, 77, 1163 (1997). 6) G. Lucovsky, Y. Wu, H. Niimi, V. Misra, and J. C. Philips, Appl. Phys. Lett., 74, 2005 (1999). 7) G. Lucovsky, J. Non-Cryst. Solids, 1, 227 (1998). 8) F. Rochet, G. Dufour, H. Roulet, B. Pelloie, J. Perrière, E. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B, 37, 6468 (1988). 9) C.-F. Lin, W.-T. Tseng, and M. Shiann Feng, J. Appl. Phys., 87, 2808 (2000). 10) G. Franzò, A. Irrera, E. C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P. G. Fallica, and F. Priolo, Appl. Phys. A: Mater. Sci. Process., 74, 1 (2002). 11) U. Kahler and H. Hofmeister, Appl. Phys. A: Mater. Sci. Process., 74, 13 (2002). 12) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F. L. Martínez, D. Bravo, and F. J. López, Vacuum (to be published). 13) R. C. Barklie, M. Collins, M. Richardson, and I. Borde, J. Mater. Sci.: Mater. Electron., 12, 231 (2001). 14) A. Borghesi, A. Sassella, B. Pivac, and L. Zanotti, Solid State Commun., 100, 657 (1996). 15) E. San Andrés, Á. Del Prado, F. L. Martínez, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 87, 1187 (2000). 16) F. L. Martínez, Á. Del Prado, I. Mártil, G. González Díaz, W. Bohne, W. Fuhs, J. Rörich, B. Selle, and I. Sieber, Phys. Rev. B, 63, 245320 (2001). 17) P. V. Bulkin, P. L. Swart, and B. M. Lacquet, J. Non-Cryst. Solids, 58, 226 (1998). 18) D. V. Tsu, G. Lucovsky, and B. N. Davidson, Phys. Rev. B, 40, 1795 (1989). 19) F. L. Martínez, E. San Andrés, Á. Del Prado, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 90, 1573 (2001). 20) G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyj, Phys. Rev. B, 28, 3225 (1983). 21) M. Zacharias, D. Dimova-Malinovska, and M. Stutzmann, Philos. Mag. B, 73, 799 (1996). 22) G. Lucovsky, Solid State Commun., 29, 571 (1979). 23) A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, and N. Maley, Phys. Rev. B, 45, 13367 (1992). 24) H. Nakashima, K. Furukawa, Y. C. Liu, D. W. Gao, Y. Kashiwazaki, K. Muraoka, K. Shibata, and T. Tsurushima, J. Vac. Sci. Technol. A, 15, 1951 (1997). 25) P. M. Lenahan and J. F. Conley Jr., J. Vac. Sci. Technol. B, 16, 2134 (1998). 26) T. Inokuma, L. He, Y. Kurata, and S. Hasegawa, J. Electrochem. Soc., 142, 2346 (1995). 27) M. J. Uren, J. H. Stathis, and E. Cartier, J. Appl. Phys., 80, 3915 (1996). 28) E. San Andrés, Á. del Prado, I. Mártil, G. González-Díaz, F. L. Martínez, D. Bravo, F. J. López, and M. Fernández, Vacuum (to be published). 29) F. L. Martínez, Á. del Prado, I. Mártil, D. Bravo, and F. J. López, J. Appl. Phys., 88, 2149 (2000). 30) K. Furukawa, Y. Liu, H. Nakashima, D. Gao, K. Uchino, K. Muraoka, and H. Tsuzuki, Appl. Phys. Lett., 72, 725 (1998). 31) M. López, B. Garrido, C. García, P. Pellegrino, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, Appl. Phys. Lett., 80, 1637 (2002).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication21e27519-52b3-488f-9a2a-b4851af89a71
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,61libre.pdf
Size:
277.55 KB
Format:
Adobe Portable Document Format

Collections