Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stereovision matching through support vector machines

dc.contributor.authorPajares Martínsanz, Gonzalo
dc.contributor.authorCruz García, Jesús Manuel de la
dc.date.accessioned2023-06-20T10:43:39Z
dc.date.available2023-06-20T10:43:39Z
dc.date.issued2003-11
dc.descriptionPart of the work has been performed under project CICYT TAP94-0832-C02-01.
dc.description.abstractThis paper presents an approach to the local stereovision matching problem using edge segments as features with four attributes. In this paper we design a Support Vector Machine classifier for solving the stereovision matching problem. We obtain a matching decision function to classify a pair of features as a true or false match. The use of such classifier makes up the main finding of the paper. A comparative analysis among other existing approaches is included to show that this finding can be justified theoretically. From these investigations, we conclude that the performance of the proposed method is appropriate for this task.
dc.description.departmentSección Deptal. de Arquitectura de Computadores y Automática (Físicas)
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25769
dc.identifier.doi10.1016/S0167-8655(03)00102-8
dc.identifier.issn0167-8655
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S0167-8655(03)00102-8
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51088
dc.issue.number15
dc.journal.titlePattern Recognition Letters
dc.language.isoeng
dc.page.final2583
dc.page.initial2575
dc.publisherElsevier Science BV
dc.relation.projectIDTAP94-0832-C02-01
dc.rights.accessRightsopen access
dc.subject.cdu004
dc.subject.keywordAlgorithm
dc.subject.keywordVision
dc.subject.ucmInformática (Informática)
dc.subject.unesco1203.17 Informática
dc.titleStereovision matching through support vector machines
dc.typejournal article
dc.volume.number24
dcterms.referencesBaillard, C., Dissard, O., 2000. A stereo matching algorithm for urban digital elevation models. Photogrammet. Eng. Remote Sensing 66 (9), 1119–1128. Cherkassky, V., Mulier, F., 1998. Learning from Data: Concepts, Theory and Methods. Wiley, New York. Huertas, A., Medioni, G., 1986. Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian masks. IEEE Trans. Pattern Anal. Machine Intell. 8 (5), 651-664. Kim, Y.S., Lee, J.J., Ha, Y.H., 1997. Stereo matching algorithm based on modified wavelet decomposition process. Pattern Recognition 30(6), 929–952. Krotkov, E.P., 1989. Active Computer Vision by Cooperative Focus and Stereo. Springer-Verlag, Berlin. Lee, S.H., Leou, J.J., 1994. A dynamic programming approach to line segment matching in stereo vision. Pattern Recognition 27, 961–986. Leu, J.G., Yau, H.L., 1991. Detecting the dislocations in metal crystals from microscopic images. Pattern Recognition 24(1), 41–56. Lew, M.S., Huang, T.S., Wong, K., 1994. Learning and feature selection in stereo matching. IEEE Trans. Pattern Anal. Machine Intell. 16 (9), 869–881. Marr, D., Poggio, T., 1979. A computational theory of human stereovision. Proc. Roy. Soc. London B 207, 301–328. Medioni, G., Nevatia, R., 1985. Segment based stereo matching. Comput. Vision Graphics Image Process. 31, 2–18. Nevatia, R., Babu, K.R., 1980. Linear feature extraction and description. Comput. Vision Graphics Image Process. 13, 26–257. Pajares, G., Cruz, J.M., 2002. The non-parametric Parzen's window in stereovision matching. IEEE Trans. Systems Man Cybernet. 32 (2), 225–230. Pajares, G., Cruz, J.M., López, J.A., 1998a. Pattern recognition learning applied to stereovision matching. In: Amin, A., Dori, D., Pudil, P., Freeman, H. (Eds.), Advances in Pattern Recognition. Springer-Verlag, Berlin, pp. 997–1004. Pajares, G., Cruz, J.M., Aranda, J., 1998b. Relaxation by Hopfield network in stereo image matching. Pattern Recognition 31 (5), 561–574. Pajares, G., Cruz, J.M., López-Orozco, J.A., 1998c.Improving stereovision matching through supervised learning. Pattern Anal. Applicat. 1, 105–120. Pajares, G., Cruz, J.M., López-Orozco, J.A., 1999. Stereo matching using Hebbian learning. IEEE Trans. Systems Man Cybernet. 29 (4), 553–559. Platt, J., 2000. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers. MIT Press,Cambridge, MA. Pollard, S.B., Mayhew, J.E.W., Frisby, J.P., 1981. PMF: a stereo correspondence algorithm using a disparity gradient limit. Perception 14, 449–470. Tanaka, S., Kak, A.C., 1990. A rule-based approach to binocular stereopsis. In: Jain, R.C., Jain, A.K. (Eds.), Analysis and Interpretation of Range Images. Springer-Verlag, Berlin. Trucco, E., Verri, A., 1998. Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Upper Saddle River. Vapnik, V.N., 2000. The Nature of Statistical Learning Theory. Springer-Verlag, New York. Wei, G.Q., Brauer, W., Hirzinger, G., 1998. Intensity- and gradient-based stereo matching using hierarchical Gaussian basis functions. IEEE Trans. Patt. Anal. Machine Intell. 20 (11), 1143–1160. Zhang, Z., Blum, R.S., 1999. A categorization of multiscaledecomposition-based image fusion schemes with a performance study for a digital camera application. Proc. IEEE 87 (8), 1315–1325.
dspace.entity.typePublication
relation.isAuthorOfPublication878e090e-a59f-4f17-b5a2-7746bed14484
relation.isAuthorOfPublication.latestForDiscovery878e090e-a59f-4f17-b5a2-7746bed14484

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cruzgarcia43.pdf
Size:
212.68 KB
Format:
Adobe Portable Document Format

Collections