Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Automorphisms of moduli spaces of vector bundles over a curve

dc.contributor.authorBiswas, Indranil
dc.contributor.authorGómez, Tomás L.
dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-19T13:21:35Z
dc.date.available2023-06-19T13:21:35Z
dc.date.issued2013
dc.description.abstractLet X be an irreducible smooth complex projective curve of genus g ≥ 4. Let M(r,Λ) be the moduli space of stable vector bundles E −→ X or rank r and fixed determinant Λ.We show that the automorphism group of M(r,Λ) is generated by automorphisms of the curve X, tensorization with suitable line bundles, and, in case r divides 2 deg(Λ), also dualization of vector bundles.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21336
dc.identifier.doi10.1016/j.exmath.2012.08.002
dc.identifier.issn0723-0869
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0723086912000436
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33294
dc.issue.number1
dc.journal.titleExpositiones Mathematicae
dc.language.isoeng
dc.page.final86
dc.page.initial73
dc.publisherElsevier
dc.relation.projectIDMTM2007-63582
dc.relation.projectIDMTM2010-17389
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordStable bundles
dc.subject.keywordModuli space
dc.subject.keywordAutomorphism group
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleAutomorphisms of moduli spaces of vector bundles over a curve
dc.typejournal article
dc.volume.number31
dcterms.referencesU. Bhosle, Generalized parabolic bundles and applications–II, Proc. Indian Acad. Sci. Math. Sci. 106 (1996) 403–420. I. Biswas, T. Gomez, V. Muñoz, Automorphisms of moduli spaces of symplectic bundles, Internat. J. Math.23 (5) (2012), http://dx.doi.org/10.1142/S0129167X12500528. J.-M. Drezet, M.S. Narasimhan, The Picard group of moduli varieties of semistable bundles over algebraic curves,Invent. Math. 97 (1989) 53–94. G. Faltings, Stable G-bundles and projective connections,J. Algebraic Geom. 2 (1993) 507–568. M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. I, Amer. J. Math. 80 (1958)614–622. N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91–114. N. Hoffmann, Moduli stacks of vector bundles on curves and the King–Schofield rationality proof,in: F. Bogomolov, Y. Tschinkel (Eds.), Cohomological and Geometric Approaches to Rationality Problems.New Perspectives, in: Progress in Mathematics, vol. 282, Birkhauser, 2010, pp. 133–148. J.-M. Hwang, S. Ramanan, Hecke curves and Hitchin discriminant, Ann. Sci. ´ Ec. Norm. Sup´er. 37 (2004)801–817. A. Kouvidakis, T. Pantev, The automorphism group of the moduli space of semistable vector bundles, Math.Ann. 302 (1995) 225–268. D. Mumford, P.E. Newstead, Periods of a moduli space of bundles on curves, Amer. J. Math. 90 (1968)1200–1208. M.S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve,Ann. of Math. 101 (1975) 391–417. M.S. Narasimhan, S. Ramanan, Generalized Prym varieties as fixed points, J. Indian Math. Soc. 39 (1975)1–19.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
VMuñoz70.pdf
Size:
216.08 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
VMuñoz70libre.pdf
Size:
174.09 KB
Format:
Adobe Portable Document Format

Collections