Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the universal group of the Borromean rings

dc.book.titleDifferential topology
dc.contributor.authorMontesinos Amilibia, José María
dc.contributor.authorHilden, Hugh Michael
dc.contributor.authorLozano Imízcoz, María Teresa
dc.contributor.editorKoschorke, Ulrich
dc.date.accessioned2023-06-20T21:03:47Z
dc.date.available2023-06-20T21:03:47Z
dc.date.issued1988
dc.descriptionProceedings of the Second Topology Symposium, held in Siegen, FRG, Jul. 27–Aug. 1, 1987
dc.description.abstractThe authors improve the result of their previous paper on universal groups [the authors and W. Whitten, Invent. Math. 87, 411-456] and apply them to prove several interesting results on 3-manifolds. We quote some of these results below, adding necessary definitions: Definition. Let U be a discrete group of isometries of hyperbolic 3-space, H 3 . One says that U is universal if it has the following property: If M 3 is any closed oriented 3- manifold, then there is a finite index subgroup, G(M 3 ), of U such that M 3 is the orbit space of the action of G(M 3 ) on H 3 . Theorem 1. There is a universal group U which is a subgroup of PSL 2 (A ^), where A ^ is the ring of algebraic integers of the field Q(2,i,t). Furthermore U is an arithmetic group (a subgroup of index 120 in the tetrahedral reflection group). Theorem 4. The universal group U has an index four subgroup N which acts freely on H 3 . Also, U/N is cyclic. Theorem 5. Every closed oriented 3- manifold can be “pentagulated”; that is, obtained from a finite set of dodecahedra by pasting along pentagonal faces in pairs. Theorem 6. Any closed oriented 3-manifold has a cell decomposition whose 2-skeleton is the image of an immersion of a disconnected surface with boundary. The immersion is in general position. Definition. A 3-manifold is called dodecahedral if it is a complete hyperbolic 3-manifold with a tesselation by regular, right-dihedral angled hyperbolic dodecahedra. Theorem 7. Every closed 3-manifold is the orbit space of an orientation preserving ℤ/4 action on a dodecahedral manifold. Theorem 8. Let π be the fundamental group of a compact oriented 3-manifold M 3 . Then π is isomorphic to a group of fixed point free, tesselation preserving, isometries of a dodecahedral manifold.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17096
dc.identifier.isbn0075-8434
dc.identifier.officialurlhttp://link.springer.com/book/10.1007/BFb0081464/page/1
dc.identifier.relatedurlhttp://www.springerlink.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60583
dc.issue.number1350
dc.page.final13
dc.page.initial1
dc.page.total269
dc.publication.placeBerlín
dc.publisherSpringer-Verlag
dc.relation.ispartofseriesLecture notes in mathematics
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.162
dc.subject.keyworddiscrete group of isometries of hyperbolic 3-space
dc.subject.keywordclosed oriented 3- manifold
dc.subject.keyworduniversal group
dc.subject.keywordring of algebraic integers
dc.subject.keywordarithmetic group
dc.subject.keyworddodecahedra
dc.subject.keywordimmersion
dc.subject.keywordcomplete hyperbolic 3-manifold
dc.subject.keywordorbit space
dc.subject.keyworddodecahedral manifold
dc.subject.keywordfundamental group
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleOn the universal group of the Borromean rings
dc.typebook part
dcterms.referencesH.M. Hilden, M.T. Lozano, J.M. Montesinos, and W. Whitten, "On universal groups and three-manifolds", Inventiones, vol. 87 (1987), 441–456. Alan F. Beardon, "The Geometry of Discrete Groups", Springer-Verlag, #91, Graduate Texts in Mathematics. Hyman Bass, "Groups of Integral Representation Type", Pacific J. Math., vol. 86 (1980), 15–51. M.A. Armstrong, "The fundamental group of the orbit space of a discontinuous group", Proc. Camb. Phil. Soc., 64 (1968), 299–301. W. Thurston, "The geometry and topology of three-manifolds", Princeton University Press, (to appear). H. Hilden, M. Lozano and J. Montesinos, "The Whitehead link, the Borromean rings and the Knot 946 are universal", Collec. Math., 34 (1983), 19–28. H. Hilden, M. Lozano and J. Montesinos, "Universal knots", LNM #1144 (D. Rolfsen, ed.), Springer-Verlag, (1985), 25–59. H. Hilden, M. Lozano and J. Montesinos, "On knots that are universal", Topology, vol. 24 (1985), 499–504. Alan W. Reid, "Arithmetic Kleinian groups and their Fuchsian subgroups", Ph. D. thesis, Univ. of Aberdeen, Scotland, 1987. E.B. Vinberg, "Discrete Groups generated by reflections in Lobacerskii spaces", Mat. Sbornik 114 (1967), 471–488. (A.M.S. translation, Math. USSR Sbornik 1 (1967), 429–444.)
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download