Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of constituent materials on the impact toughness and fracture mechanisms of hot-roll-bonded aluminum multilayer laminates

dc.contributor.authorCepeda Jiménez, C. M.
dc.contributor.authorHidalgo Alcalde, Pedro
dc.contributor.authorPozuelo, M.
dc.contributor.authorRuano, O. A.
dc.contributor.authorCarreño, F.
dc.date.accessioned2023-06-20T03:39:45Z
dc.date.available2023-06-20T03:39:45Z
dc.date.issued2010-01
dc.description© The Minerals, Metals & Materials Society and ASM International 2010. Financial support from CICYT (Project Nos. MAT2003-01172 and MAT2006-11202) is gratefully acknowledged. Two of the authors, PH and CMC, thank CSIC for an I3P fellowship and an I3P contract, respectively. We also thank A. García-Delgado for assistance with electron microscopy and C.C. Moreno-Hernández and J.A. Jiménez- Rodríguez for assistance with X-ray diffraction. Finally, the authors make a special mention in memory of P.J. González-Aparicio for his assistance with electron microscopy during all these years.
dc.description.abstractTwo aluminum multilayer laminates have been processed by hot roll bonding following similar processing paths. The first one is constituted by alternated Al 2024 and Al 1050 layers (ALH19) and the second one by alternated Al 7075 and Al 1050 layers (ADH19). The influence of the constituent materials in the multilayer laminates both during the processing at high temperature and during the subsequent mechanical characterization has been analyzed. The mechanical behavior of the as-received materials at the processing conditions has been characterized by hot torsion. Multilayer laminates have been tested at room temperature under impact Charpy tests, three-point bend tests, and shear tests on the interfaces. The relative toughness increase compared to the constituent materials was much higher for the ADH19 laminate based on the high-strength Al 7075 alloy than for the ALH19 laminate. This is attributed to the different fracture mechanism.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT
dc.description.sponsorshipCSIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25459
dc.identifier.doi10.1007/s11661-009-0069-x
dc.identifier.issn1073-5623
dc.identifier.officialurlhttp://dx.doi.org/10.1007/s11661-009-0069-x
dc.identifier.relatedurlhttp://link.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44191
dc.issue.number1
dc.journal.titleMetallurgical and Materials Transactions A-Physical Metallurgy and Materials Science
dc.language.isoeng
dc.page.final72
dc.page.initial61
dc.publisherSpringer
dc.relation.projectIDMAT2003-01172
dc.relation.projectIDMAT2006-11202
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordUltrahigh Carbon-Steel
dc.subject.keywordShear Tests
dc.subject.keywordAlloy
dc.subject.keywordComposite
dc.subject.keywordStrength
dc.subject.keywordMicrostructure
dc.subject.keywordDeformation
dc.subject.keywordWorkability
dc.subject.keywordTemperature
dc.subject.keywordParameters
dc.subject.ucmFísica de materiales
dc.titleInfluence of constituent materials on the impact toughness and fracture mechanisms of hot-roll-bonded aluminum multilayer laminates
dc.typejournal article
dc.volume.number41A
dcterms.references1. Y.S. Chen, Q.D. Wang, H.J. Roven, M. Karlsen, Y.D. Yu, M.P. Liu, and J. Hjelen: J. Alloy Compd., 2008, vol. 462, pp. 192–200. 2. J.M. García-Infanta, A.P. Zhilyaev, A. Sharafutdinov, O.A. Ruano, and F. Carreño: J. Alloy Compd., 2009, vol. 473, pp. 163–66. 3. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83. 4. H.W. Kim, S.B. Kang, N. Tsuji, and Y. Minamino:Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3151–63. 5. W.Q. Cao, A. Godfrey, N. Hansen, and Q. Liu: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 204–14. 6. M. Shaarbaf and M.R. Toroghinejad: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1693–700. 7. N. Tsuji, Y. Saito, S.-H. Lee, and Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44. 8. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, and T. Sakai: Scripta Mater., 2002, vol. 46, pp. 281–85. 9. N. Kamikawa, T. Sakai, and N. Tsuji: Acta Mater., 2007, vol. 55, pp. 5873–88. 10. S.-H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, and T. Sakai: Mater. Trans., 2003, vol. 44, pp. 1376–81. 11. S.-H. Lee, H. Utsunomiya, and T. Sakai: Mater. Trans., 2004, vol. 45, pp. 2177–81. 12. P.B. Prangnell, J.R. Bowen, and P.J. Apps: Mater. Sci. Eng. A, 2004, vols. 375–377, pp. 178–85. 13. S.G. Chowdhury, V.C. Srivastava, B. Ravikumar, and S. Soren: Scripta Mater., 2006, vol. 54, pp. 1691–96. 14. S.G. Chowdhury, A. Dutta, B. Ravikumar, and A. Kumar:Mater. Sci. Eng. A, 2006, vol. 428, pp. 351–57. 15. E.A. Starke, Jr and J.T. Staley:Prog. Aerospace Sci., 1996, vol. 32, pp. 131–72. 16. R. DeIasi and P. Adler: Metall. Trans. A, 1977, vol. 8A, pp. 1177–83. 17. S.H. Lee, Y. Saito, T. Sakai, and H. Utsunomiya:Mater. Sci. Eng. A, 2002, vol. 235, pp. 228–35. 18. C.M. Cepeda-Jime´nez, M. Pozuelo, O.A. Ruano, and F. Carreñoo: J. Alloy Compd., 2009, vol. 478, pp. 154–62. 19. B.L. Li, N. Tsuji, and N. Kamikawa: Mater. Sci. Eng. A, 2006, vol. 423, pp. 331–42. 20. F.J. Humphreys and M. Hatherly: in Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, United Kingdom, 2004. 21. M.Z. Quadir, O. Al-Buhamad, L. Bassman, and M. Ferry: Acta Mater., 2007, vol. 55, pp. 5438–48. 22. O. Ruano and O. Sherby: Rev. Met. CENIM, 1983, vol. 19, pp. 261–7 23. J. Hirsch and K. Lu¨cke: Acta Metall., 1988, vol. 36, pp. 2863–82. 24. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74. 25. W. Mao: Mater. Sci. Eng. A, 1998, vol. 257, pp. 171–77. 26. C.P. Heason and P. B. Prangnell: Proc. 2 nd Int. Conf. on Nanom-arterials by Severe Plastic Deformation (NANOSPD2), Institute of Materials Physics of the University of Vienna, Austria , 2002, pp. 498-504.
dspace.entity.typePublication
relation.isAuthorOfPublicationc834e5a4-3450-4ff7-8ca1-663a43f050bb
relation.isAuthorOfPublication.latestForDiscoveryc834e5a4-3450-4ff7-8ca1-663a43f050bb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
HidalgoP10libre.pdf
Size:
940.13 KB
Format:
Adobe Portable Document Format

Collections