Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Random versus deterministic 2-dimensional traffic flow models

dc.contributor.authorMartínez, Froilán C.
dc.contributor.authorCuesta, José A.
dc.contributor.authorMolera, Juan M.
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T18:46:52Z
dc.date.available2023-06-20T18:46:52Z
dc.date.issued1995-02
dc.description©1995 The American Physical Society. We want to thank A. Sánchez for a critical reading of the manuscript. We also acknowledge financial support from the Dirección General de Investigación Científica y Técnica (Spain) through Project No. PB92-0248 (F.C.M. and J.M.M.) and Project No. PB91-0378 (J.A.C. and R.B.). R. B. also acknowledges financial support from the Ministerio de Educación y Ciencia (Spain).
dc.description.abstractDeterministic and stochastic cellular automata models available to study two-dimensional traffic fIow are compared in this paper. It is shown that a connection between them can be made only when the infinite time and infinite system limits are taken in the appropriate order. We also stress the crucial importance of the choice of boundary conditions in the deterministic model to obtain bulk properties.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Investigación Científica y Técnica (Spain)
dc.description.sponsorshipMinisterio de Educación y Ciencia (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/22076
dc.identifier.doi10.1103/PhysRevE.51.175
dc.identifier.issn1063-651X
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.51.175
dc.identifier.relatedurlhttp://pre.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58596
dc.issue.number2
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.page.finalR838
dc.page.initialR835
dc.relation.projectIDPB92-0248
dc.relation.projectIDPB91-0378
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordAutomaton
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleRandom versus deterministic 2-dimensional traffic flow models
dc.typejournal article
dc.volume.number51
dcterms.references[1]K. Nagel and M. Schreckenberg, J. Phys. (France) I, 2, 2221 (1992); K. Nagel and H. J. Herrmann, Physica A 199/2, 254 (1993); A. Schadschneider and M. Schreckenberg, J. Phys. A 26, L679 (1993). [2] O. Biham, A. A. Middleton, and D. Levine, Phys. Rev. A 46, R6124 (1992). [3] J. A. Cuesta, F. C. Martínez, J. M. Molera, and A. Sánchez, Phys. Rev. E 48, R4175 (1993). [4] J. M. Molera, F. C. Martínez, J. A. Cuesta, and R. Brito, Phys. Rev. E 51, 175 (1995). [5] Actually, for finite size simulations, the value of the correlations is ~(N/2) [(N/2) —1]L = (n /4) —(n/2L ), so for small n (of the order 1/L ), deviations of the value n /4 are noticeable, as can be seen in Fig. 1. [6] Anyhow, Eq. (4) seems to be an overall good approximation for υ(n) in the freely moving phase (see Ref. [4] for more details). The reason is that, although the difference between a function and an approximation to it may be small, the difference between their derivatives will almost certainly be amplified.
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito29_libre.pdf
Size:
227.46 KB
Format:
Adobe Portable Document Format

Collections