Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optical analysis of absorbing thin films: application to ternary chalcopyrite semiconductors

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorHernández Rojas, J.L.
dc.contributor.authorLucía Mulas, María Luisa
dc.contributor.authorSánchez Quesada, Francisco
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.date.accessioned2023-06-20T19:08:52Z
dc.date.available2023-06-20T19:08:52Z
dc.date.issued1992-04-01
dc.description© Optical Society of America. The authors thank J. Carabe (Instituto de Energías Renovables, Centro de Investigaciones Energéticas y Medio Ambientales) for optical measurement facilities and J.M. Gómez de Salazar (Departamento de Metalurgia, Universidad Complutense de Madrid) for the scanning electron microscope facilities.
dc.description.abstractThe refractive index n and the absorption coefficient-alpha of radio frequency sputtered CuGaSe2 and CuInSe2 thin films were obtained by means of transmissivity (T) and reflectivity (R) measurements at normal incidence. The optical properties were determined from the rigorous expressions for the transmission and the reflection in an air/film/(glass)substrate/air multilayer system. The solutions to this system of equations are not unique, and the physically meaningful solution is identified by trying different thicknesses in the numerical approach. Usually, nonacceptable n dispersion curves are found for all thicknesses. To be able to obtain a good n dispersion curve and, therefore, a correct absorption coefficient, we propose a simple modification of the equations for R and T through a factor called the coherence factor (CF). Because of the surface roughness and the nonuniformity of n and alpha, the light rays that reflect internally in the interface between the substrate and the film have a random difference in optical path. The CF accounts for this effect. This modification leads to an unambiguous and accurate determination of the optical properties and thickness of thin films for all wavelengths where transmission is not negligible. The CF is shown to be greatly dependent on the thickness of the film. This method can be used even when the R and T spectra do not have interference fringes. This method is applied successfully to the optical analyses, in the 0.4-2.5-mu-m wavelength range, of CuInSe2 and CuGaSe2 ternary chalcopyrite thin films deposited onto glass substrates by radio-frequency sputtering.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27133
dc.identifier.doi10.1364/AO.31.001606
dc.identifier.issn0003-6935
dc.identifier.officialurlhttp://dx.doi.org/10.1364/AO.31.001606
dc.identifier.relatedurlhttp://www.opticsinfobase.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59312
dc.issue.number10
dc.journal.titleApplied Optics
dc.language.isoeng
dc.page.final1611
dc.page.initial1606
dc.publisherThe Optical Society of America
dc.rights.accessRightsrestricted access
dc.subject.cdu537
dc.subject.keywordSubstrate-Temperature
dc.subject.keywordConstants
dc.subject.keywordCuInSe2.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleOptical analysis of absorbing thin films: application to ternary chalcopyrite semiconductors
dc.typejournal article
dc.volume.number31
dcterms.references1) B. Dimmler and H.W. Schock, "Large area Cu(Ga,In)Se, thin films prepared by mass spectrometer controlled evaporation," in Proceedings of the Ninth E. C. Photovoltaic Solar Energy Conference, W. Palz, ed. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 160-162. 2) J. Aranda, J.L. Morenza, J. Esteve, and J.M. Codina, "Optical properties of vacuum-evaporated CdTe thin films," Thin Solid Films, 120, 23-30 (1984). 3) M.C. Gupta, "Optical constant determination of thin films," Appl. Opt., 27, 954-956 (1988). 4) S.G. Tomlin, "Optical reflection and transmission formulae for thin films," Br. J. Appl. Phys., 1, 1667-1671 (1968). 5) R.T. Phillips, "A numerical method for determining the complex refractive index from reflectance and transmittance of supported thin films," J. Phys. D., 16, 489-497 (1983). 6) D.A. Minkov, "Method for determining the optical constants of a thin film on a transparent substrate," J. Phys. D, 22, 199-205 (1989). 7) I. Filinski, "The effects of sample imperfections on optical spectra," Phys. Status Solidi B, 49, 577-588 (1972). 8) B. Bovard, F.J. Van Milligen, M.J. Messerly, S.G. Saxe, and H.A. Macleod, "Optical constants derivation for an inhomogeneous thin film from in situ transmission measurements," Appl. Opt., 24, 1803-1807 (1985). 9) M.I. Török, L. Michailovits, and I. Hevesi, "Correction method for determining the optical constants of thin films with non-uniform thickness," Thin Solid Films, 116,235-239 (1984). 10) R.E. Denton, R.D. Campbell, and S.G. Tomlin, "The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence," J. Phys. D, 5, 847-863 (1972). 11) J. Santamaría, I. Mártil, E. Iborra, G. González-Díaz, and F. Sánchez-Quesada, "Substrate temperature effect on the optical properties of radio-frequency sputtered CuInSe, thin films," J. Vac. Sci. Technol. A, 7, 1424-1427 (1989). 12) I. Mártil, J. Santamaría, G. González-Díaz, and F. Sánchez-Quesada, "Structural, electrical and optical properties of CuGaSe2 r.f. sputtered thin films," J. Appl. Phys., 68, 189-194 (1990). 13) 0.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965). 14) P.0. Nilsson, "Determination of optical constants from intensity measurements at normal incidence," Appl. Opt., 7, 435-442 (1968). 15) E. Khawaja and S.G. Tomlin, "The optical constants of thin evaporated films of cadmium and zinc sulphides," J. Phys. D, 3, 581-594 (1975). 16) I. Mártil, G. González-Díaz, J. Santamaría, M.L. Lucía, J.L. Hernández-Rojas, and F. Sánchez-Quesada, "Growth and physical properties of CuGaSe, thin films by r.f. sputtering," J. Mater. Sci. Lett., 19, 237-240 (1990). 17) L.L. Kazmerski, F.R. White, and G.K. Morgan, "Thin-film CuInSe,/CdS heterojunction solar cells," Appl. Phys. Lett., 29, 268-270 (1976). 18) J.R. Tuttle, D. Albin, R.J. Matson, and R. Noufi, "A comprehensive study on the optical properties of thin-film CuInSe2 as a function of composition and substrate temperature," J. Appl. Phys., 66, 4408-4417 (1989). 19) J. Tuttle, D. Albin, J. Gorah, C. Kennedy, and R. Noufi, "Effects of composition and substrate temperature on the electro-optical properties of thin film CuInSe2 and CuGaSe2," Sol. Cells, 24, 67-79 (1988). 20) W. Arndt, H. Dittrich, and H.W. Shock, "CuGaSe 2 thin films for photovoltaic applications," Thin Solid Films, 130, 208-216 (1985). 21) J.L. Shay, B. Tell, H.M. Kasgar, and L.M. Schiavona, "p-d hybridization of the valence bands of I-III-VI, compounds," Phys. Rev., 8, 5003-5005 (1972). 22) G.D. Boyd, H.M. Kasper, J.H. McFee, and F.G. Storz, "Linear and nonlinear optical properties of some ternary selenides," IEEE J. Quantum Electron, QE-12, 900-908 (1972).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication83f99fc6-abdc-4870-9040-a54cfb6fd5bf
relation.isAuthorOfPublicatione10ef3c8-ce81-45ae-b2cc-8cc0326e23a1
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eprint27133.pdf
Size:
701.32 KB
Format:
Adobe Portable Document Format

Collections