Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars

dc.contributor.authorFolgueira López, Marta
dc.contributor.authorSouchay, J.
dc.date.accessioned2023-06-20T09:34:52Z
dc.date.available2023-06-20T09:34:52Z
dc.date.issued2005
dc.description.abstractThe purpose of this paper is to show how to solve in Hamiltonian formalism the equations of the polar motion of any arbitrarily shaped elastic celestial body, i.e. the motion of its rotation axis ( or angular momentum) with respect to its figure axis. With this aim, we deduce from canonical equations related to the rotational Hamiltonian of the body, the analytical solution for its free polar motion which depends both on the elasticity and on its moments of inertia. In particular, we study the influence of the phase angle delta, responsible for the dissipation, on the damping of the polar motion. In order to validate our analytical equations, we show that, to first order, they are in complete agreement with those obtained from the classical Liouville equations. Then we adapt our calculations to the real data obtained from the polar motion of the Earth (polhody). For that purpose, we characterize precisely the differences in radius J - chi and in angle l - theta between the polar coordinates (chi, theta) and ( J, l) representing respectively the motion of the axis of rotation of the Earth and the motion of its angular momentum axis, with respect to an Earth-fixed reference frame, after showing the influence of the choice of the origin on these coordinates, and on the determination of the Chandler period as well. Then we show that the phase lag delta responsible for the damping for the selected time interval, between Feb. 1982 and Apr. 1990, might be of the order of delta approximate to 6degrees, according to a numerical integration starting from our analytical equations. Moreover, we emphasize the presence in our calculations for both. and., of an oscillation with a period T(Chandler)/2, due to the triaxial shape of our planet, and generally not taken into account. In a last step, we apply our analytical formulation to the polar motion of Mars, thus showing the high dependence of its damping on the poorly known value of its Love number k. Moreover we emphasize the large oscillations of Mars' polar motion due to the triaxiality of this planet.en
dc.description.departmentUnidad Deptal. de Astronomía y Geodesia
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipObservatorio de París
dc.description.sponsorshipDescartes Prize Allowance
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15350
dc.identifier.doi10.1051/0004-6361:20041312
dc.identifier.issn0004-6361
dc.identifier.officialurlhttps//doi.org/10.1051/0004-6361:20041312
dc.identifier.relatedurlhttp://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361:20041312&Itemid=129
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49957
dc.issue.number3
dc.journal.titleAstronomy & Astrophysics
dc.language.isoeng
dc.page.final1113
dc.page.initial1101
dc.publisherEDP Sciences
dc.rights.accessRightsopen access
dc.subject.cdu52
dc.subject.keywordMethods : analytical
dc.subject.keywordSolar system: general
dc.subject.ucmAstronomía (Matemáticas)
dc.subject.unesco21 Astronomía y Astrofísica
dc.titleFree polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Marsen
dc.typejournal article
dc.volume.number432
dspace.entity.typePublication
relation.isAuthorOfPublication223c36c3-42a2-4a9d-8c9b-868020e3625f
relation.isAuthorOfPublication.latestForDiscovery223c36c3-42a2-4a9d-8c9b-868020e3625f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
07.pdf
Size:
512.37 KB
Format:
Adobe Portable Document Format

Collections