Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rock slope stability analysis under Hoek–Brown failure criterion with different flow rules

dc.contributor.authorMelentijevic Devetakovic, Svetlana
dc.contributor.authorBerisavljevic, Zoran
dc.contributor.authorBerisavljevic, Dusan
dc.contributor.authorOlalla Marañón, Claudio
dc.date.accessioned2024-04-26T15:18:17Z
dc.date.available2024-04-26T15:18:17Z
dc.date.issued2024-04-19
dc.description.abstractThe stability analysis of homogeneous rock slope following the Hoek–Brown failure criterion under the hypothesis of different flow rules is performed based on limit equilibrium and finite element methods. The applied failure criterion is the generalized Hoek–Brown that can be introduced as a shear/normal function in analysis applying different flow rules. The results are compared with those obtained by the application of equivalent shear strength parameters of the Mohr–Coulomb criterion, considering that this is still the most widely used criterion in rock slope stability analysis and is still the base for the shear strength reduction method applied in finite element modelling. Different proposals for estimating the equivalent strength parameters based on confining stress level are evaluated. The limitation of stress-dependent linear Mohr–Coulomb parameters is emphasized by analysing the vertical cut problem, for which, depending on the chosen stress level, different critical heights are obtained for the same material. Sensitivity analysis of geotechnical parameters used as input for failure criterion is performed to determine their influence on slope stability. Probabilistic analysis is conducted to determine the probability of failure when different flow rules are applied. If slope stability analysis is performed with an assumption of associative flow rule, the probability of failure is within the acceptable limits for the considered case study, while employing non-associative flow rule, the probability of failure is rather high. The chart is presented that could be readily used to estimate the combination of σci, GSI, and mi values that produce failure for the analysed case study.
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipThe Science Fund of the Republic of Serbia
dc.description.sponsorshipErasmus
dc.description.sponsorshipCRUE-CSIC
dc.description.statuspub
dc.identifier.doi10.1007/s10064-024-03667-0
dc.identifier.essn1435-9537
dc.identifier.issn1435-9529
dc.identifier.officialurlhttps://doi.org/10.1007/s10064-024-03667-0
dc.identifier.urihttps://hdl.handle.net/20.500.14352/103582
dc.issue.number181
dc.journal.titleBulletin of Engineering Geology and the Environment
dc.language.isoeng
dc.publisherSpringer
dc.relation.projectID6524757
dc.relation.projectIDEMADRID03
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu624.12
dc.subject.keywordCircular failure surface
dc.subject.keywordHoek and Brown failure criterion
dc.subject.keywordFlow rule
dc.subject.keywordShear/normal function
dc.subject.keywordStress level
dc.subject.keywordProbabilistic and sensitivity analysis
dc.subject.ucmGeodinámica
dc.subject.unesco2506.20 Geología Estructural
dc.titleRock slope stability analysis under Hoek–Brown failure criterion with different flow rules
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number83
dspace.entity.typePublication
relation.isAuthorOfPublication4ef0dfbd-5158-4908-9b51-fcd3a8a8ffc1
relation.isAuthorOfPublication.latestForDiscovery4ef0dfbd-5158-4908-9b51-fcd3a8a8ffc1

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rock slope stability analysis under Hoek–Brown failure.pdf
Size:
3.77 MB
Format:
Adobe Portable Document Format

Collections