Matrices commuting with a given normal tropical matrix
dc.contributor.author | Linde, J. | |
dc.contributor.author | Puente Muñoz, María Jesús De La | |
dc.date.accessioned | 2023-06-18T06:46:02Z | |
dc.date.available | 2023-06-18T06:46:02Z | |
dc.date.issued | 2015-10 | |
dc.description.abstract | Consider the space Mnnor of square normal matrices X=(xij) over R∪{-∞}, i.e., -∞≤xij≤0 and ;bsupesup&=0. Endow Mnnor with the tropical sum ⊕ and multiplication. Fix a real matrix AεMnnor and consider the set Ω(A) of matrices in Mnnor which commute with A. We prove that Ω(A) is a finite union of alcoved polytopes; in particular, Ω(A) is a finite union of convex sets. The set ;bsupA;esup&(A) of X such that AX=XA=A is also a finite union of alcoved polytopes. The same is true for the set ′(A) of X such that AX=XA=X. A topology is given to Mnnor. Then, the set ΩA(A) is a neighborhood of the identity matrix I. If A is strictly normal, then Ω′(A) is a neighborhood of the zero matrix. In one case, Ω(A) is a neighborhood of A. We give an upper bound for the dimension of Ω′(A). We explore the relationship between the polyhedral complexes span A, span X and span(AX), when A and X commute. Two matrices, denoted A and A¯, arise from A, in connection with Ω(A). The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/32489 | |
dc.identifier.doi | 10.1016/j.laa.2015.04.032 | |
dc.identifier.issn | 0024-3795 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.laa.2015.04.032 | |
dc.identifier.relatedurl | http://arxiv.org/pdf/1209.0660v5.pdf | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24098 | |
dc.journal.title | Linear Algebra and its Applications | |
dc.language.iso | eng | |
dc.page.final | 121 | |
dc.page.initial | 101 | |
dc.publisher | Elsevier Science | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512 | |
dc.subject.keyword | Tropical algebra | |
dc.subject.keyword | Commuting matrices | |
dc.subject.keyword | Normal matrix | |
dc.subject.keyword | Idempotent matrix | |
dc.subject.keyword | Alcoved polytope | |
dc.subject.keyword | Convexity | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Matrices commuting with a given normal tropical matrix | |
dc.type | journal article | |
dc.volume.number | 482 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 630e203d-3f7d-46d6-a43c-cb07da8c4b71 | |
relation.isAuthorOfPublication.latestForDiscovery | 630e203d-3f7d-46d6-a43c-cb07da8c4b71 |