Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two formalisms, one renormalized stress-energy tensor

dc.contributor.authorBarceló, Carlos
dc.contributor.authorCarballo-Rubio, Raúl
dc.contributor.authorGaray Elizondo, Luis Javier
dc.date.accessioned2023-06-20T03:49:40Z
dc.date.available2023-06-20T03:49:40Z
dc.date.issued2012-04-02
dc.description© 2012 American Physical Society. This work originated from a conversation we had with Emil Mottola. We thank him for that and for all his comments during its development. We also want to thank Víctor Aldaya, Manuel Calixto, Julio Guerrero, and Guillermo A. Mena Marugán for helpful comments and discussions. Financial support was provided by the Spanish MICINN through Projects No. FIS2008-06078-C03-01 and No. FIS2008-06078-C03-03 and by the Junta de Andalucía through Project No. FQM219. R. C. acknowledges support from CSIC through the JAE-Predoc program, co-funded by FSE.
dc.description.abstractWe explicitly compare the structure of the renormalized stress-energy tensor of a massless scalar field in a (1 + 1) curved spacetime as obtained by two different strategies: normal-mode construction of the field operator and one-loop effective action. We pay special attention to where and how the information related to the choice of vacuum state in both formalisms is encoded. By establishing a clear translation map between both procedures, we show that these two potentially different renormalized stress-energy tensors are actually equal, when using vacuum-state choices related by this map. One specific aim of the analysis is to facilitate the comparison of results regarding semiclassical effects in gravitational collapse as obtained within these different formalisms.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish MICINN
dc.description.sponsorshipJunta de Andalucia
dc.description.sponsorshipCSIC
dc.description.sponsorshipFSE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29661
dc.identifier.doi10.1103/PhysRevD.85.084001
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.85.084001
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44513
dc.issue.number8
dc.journal.titlePhysical review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2008-06078-C03-01
dc.relation.projectIDFIS2008-06078-C03-03
dc.relation.projectIDFQM219
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordQuantum-field-theory
dc.subject.keywordCurved spacetime
dc.subject.keywordBlack-hole
dc.subject.keywordSingularity structure
dc.subject.keywordParticle creation
dc.subject.keyword2-Point function
dc.subject.keywordTimes
dc.subject.ucmFísica de materiales
dc.titleTwo formalisms, one renormalized stress-energy tensor
dc.typejournal article
dc.volume.number85
dcterms.references[1] D. N. Page, Phys. Rev. D 13, 198 (1976). [2] P. C. W. Davies, S. A. Fulling, and W. G. Unruh, Phys. Rev. D 13, 2720 (1976). [3] S. M. Christensen and S. A. Fulling, Phys. Rev. D 15, 2088 (1977); P. C. W. Davies and S. A. Fulling, Proc. R. Soc. A 354, 59–77 (1977). [4] E. Mottola and R. Vaulin, Phys. Rev. D 74, 064004 (2006). [5] V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, England, 2007), p. 273. [6] R. M. Wald, Commun. Math. Phys. 54, 1 (1977). [7] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-time, London Math. Soc. Student Texts, Vol. 17 (Cambridge University Press, Cambridge, England, 1989), p. 1. [8] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Phys. Rev. D 77, 044032 (2008). [9] R. M. Wald, Quantum Field Theory in Curved Space-time and Black Hole Thermodynamics (University Press, Chicago, 1994), p. 205. [10] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England, 1982). [11] A. O. Barvinsky and D. V. Nesterov, Nucl. Phys. B608, 333 (2001). [12] S. W. Hawking, Commun. Math. Phys. 55, 133 (1977). [13] D. G. Boulware, Phys. Rev. D 11, 1404 (1975). [14] A. Corichi, J. Cortez, and H. Quevedo, Ann. Phys. (N.Y.) 313, 446 (2004). [15] A. Ashtekar and A. Magnon, Proc. R. Soc. A 346, 375 (1975). [16] A. Fabbri and J. Navarro-Salas, Modeling Black Hole Evaporation (Imperial College Press, London, England, 2005), p. 334. [17] I. Agulló, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. D 76, 044018 (2007). [18] M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Lect. Notes Phys., Vol. 759 (Springer, New York, 2008), p. 1. [19] A. Corichi, J. Cortez, G. A. Mena Marugán, and J. M. Velhinho, Classical Quantum Gravity 23, 6301 (2006). [20] I. Agulló, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. Lett. 105, 211305 (2010). [21] S. A. Fulling, M. Sweeny, and R. M. Wald, Commun. Math. Phys. 63, 257 (1978); S. A. Fulling, F. J. Narcowich, and R. M. Wald, Ann. Phys. (N.Y.) 136, 243 (1981). [22] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46, 206(E) (1976). [23] W. G. Unruh, Phys. Rev. D 14, 870 (1976). [24] M. Visser, C. Barcelo, S. Liberati, and S. Sonego, Proc. Sci., 2008 (2008) 010 [arXiv:0902.0346]. [25] E. Mottola, Acta Phys. Pol. B 41, 2031 (2010); J. Phys. Conf. Ser. 314, 012010 (2011).
dspace.entity.typePublication
relation.isAuthorOfPublication5638c18d-1c35-40d2-8b77-eb558c27585e
relation.isAuthorOfPublication.latestForDiscovery5638c18d-1c35-40d2-8b77-eb558c27585e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Garay04.pdf
Size:
148.03 KB
Format:
Adobe Portable Document Format

Collections