Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Codimension one symplectic foliations.

dc.contributor.authorCalvo, Omerar
dc.contributor.authorMuñoz, Vicente
dc.contributor.authorPresas, Francisco
dc.date.accessioned2023-06-20T10:34:36Z
dc.date.available2023-06-20T10:34:36Z
dc.date.issued2005
dc.description.abstractWe define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipResearch Training Network
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21121
dc.identifier.issn0213-2230
dc.identifier.officialurlhttp://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.rmi/1114176225
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50613
dc.issue.number1
dc.journal.titleRevista Matemática Iberoamericana
dc.language.isoeng
dc.page.final46
dc.page.initial25
dc.publisherUniversidad Autónoma Madrid
dc.relation.projectIDHPRN-CT-2000-00101
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu514
dc.subject.keywordFoliation
dc.subject.keywordSymplectic
dc.subject.keywordAsymptotically holomorphic.
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmGeometría
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1204 Geometría
dc.titleCodimension one symplectic foliations.
dc.typejournal article
dc.volume.number21
dcterms.referencesAuroux, D.: Asymptotically holomorphic families of symplectic submanifolds.Geom. Funct. Anal. 7 (1997) , 971–995. Auroux, D.: Symplectic 4-manifolds as branched coverings of CP2. Invent.Math. 139 (2000), 551–602. Calvo–Andrade, O.: Irreducible components of the spaces of holomorphic foliations. Math. Ann. 299 (1994), 751–767. Calvo–Andrade, O.: Deformation of the holonomy of a Lefschetz pencil.Qual. Theory Dyn. Syst. 1 (2000), 231–245. Cerveau, D. and Mattei, J. F.: Formes integrables holomorphes singulieres. Ast´erisque 97, Societe Mathematique de France, Paris, 1982. Cerveau, D. and Lins Neto, A.: Codimension one foliations in CPn,n ≥ 3, with Kupka components. Complex Analytic Methods in Dynamical Systems. (Rio de Janeiro, 1992).Asterisque 222 (1994), 93–133. Cerveau, D. and Lins Neto, A.: Irreducible components of the space of holomorphic foliations of degree two in CP(n), n ≥ 3. Ann. of Math. (2)143 (1996), 577–612. Donaldson, S.K.: Symplectic submanifolds and almost-complex geometry.J. Differential Geom. 44 (1996), 666–705. Donaldson, S.K.: Lefschetz pencils on symplectic manifolds. J. Differential Geom. 53 (1999), 205–236. Gomez-Mont, X. and Lins Neto, A.: Structural stability of singular holomorphic foliations having a meromorphic first integral. Topology 30 (1991), 315–334. McDuff, D. and Salamon, D.: Introduction to symplectic topology. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. Muñoz, V., Presas, F. and Sols, I.: Almost holomorphic embeddings in Grassmanians with applications to singular symplectic submanifolds.J. Reine Angew. Math. 547 (2002), 149–189. Paul, E.: Etude topologique des formes logarithmiques fermees. Invent.Math. 95, 395–420 (1989).
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
VMuñoz45libre.pdf
Size:
256.65 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
VMuñoz45.pdf
Size:
224.48 KB
Format:
Adobe Portable Document Format

Collections