Codimension one symplectic foliations.
dc.contributor.author | Calvo, Omerar | |
dc.contributor.author | Muñoz, Vicente | |
dc.contributor.author | Presas, Francisco | |
dc.date.accessioned | 2023-06-20T10:34:36Z | |
dc.date.available | 2023-06-20T10:34:36Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Research Training Network | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21121 | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.officialurl | http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.rmi/1114176225 | |
dc.identifier.relatedurl | http://projecteuclid.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50613 | |
dc.issue.number | 1 | |
dc.journal.title | Revista Matemática Iberoamericana | |
dc.language.iso | eng | |
dc.page.final | 46 | |
dc.page.initial | 25 | |
dc.publisher | Universidad Autónoma Madrid | |
dc.relation.projectID | HPRN-CT-2000-00101 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.9 | |
dc.subject.cdu | 514 | |
dc.subject.keyword | Foliation | |
dc.subject.keyword | Symplectic | |
dc.subject.keyword | Asymptotically holomorphic. | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.ucm | Geometría | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.subject.unesco | 1204 Geometría | |
dc.title | Codimension one symplectic foliations. | |
dc.type | journal article | |
dc.volume.number | 21 | |
dcterms.references | Auroux, D.: Asymptotically holomorphic families of symplectic submanifolds.Geom. Funct. Anal. 7 (1997) , 971–995. Auroux, D.: Symplectic 4-manifolds as branched coverings of CP2. Invent.Math. 139 (2000), 551–602. Calvo–Andrade, O.: Irreducible components of the spaces of holomorphic foliations. Math. Ann. 299 (1994), 751–767. Calvo–Andrade, O.: Deformation of the holonomy of a Lefschetz pencil.Qual. Theory Dyn. Syst. 1 (2000), 231–245. Cerveau, D. and Mattei, J. F.: Formes integrables holomorphes singulieres. Ast´erisque 97, Societe Mathematique de France, Paris, 1982. Cerveau, D. and Lins Neto, A.: Codimension one foliations in CPn,n ≥ 3, with Kupka components. Complex Analytic Methods in Dynamical Systems. (Rio de Janeiro, 1992).Asterisque 222 (1994), 93–133. Cerveau, D. and Lins Neto, A.: Irreducible components of the space of holomorphic foliations of degree two in CP(n), n ≥ 3. Ann. of Math. (2)143 (1996), 577–612. Donaldson, S.K.: Symplectic submanifolds and almost-complex geometry.J. Differential Geom. 44 (1996), 666–705. Donaldson, S.K.: Lefschetz pencils on symplectic manifolds. J. Differential Geom. 53 (1999), 205–236. Gomez-Mont, X. and Lins Neto, A.: Structural stability of singular holomorphic foliations having a meromorphic first integral. Topology 30 (1991), 315–334. McDuff, D. and Salamon, D.: Introduction to symplectic topology. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. Muñoz, V., Presas, F. and Sols, I.: Almost holomorphic embeddings in Grassmanians with applications to singular symplectic submanifolds.J. Reine Angew. Math. 547 (2002), 149–189. Paul, E.: Etude topologique des formes logarithmiques fermees. Invent.Math. 95, 395–420 (1989). | |
dspace.entity.type | Publication |