Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Optimizing feature straction for Symbolic Music

dc.book.titleProceedings of the 24th International Society for Music Information Retrieval Conference, Milan, Italy, Nov 5-9, 2023
dc.contributor.authorSimonetta, Federico
dc.contributor.authorLlorens, Ana
dc.contributor.authorLlorens Martín, Ana
dc.contributor.authorSerrano, Martín
dc.contributor.authorGarcía-Portugués, Eduardo
dc.contributor.authorTorrente, Álvaro
dc.contributor.authorTorrente Sánchez-Guisande, Álvaro José
dc.contributor.editorInternational Society for Music Information Retrieval
dc.date.accessioned2025-01-14T18:08:43Z
dc.date.available2025-01-14T18:08:43Z
dc.date.issued2023-03-01
dc.description.abstractThis paper presents a comprehensive investigation of existing feature extraction tools for symbolic music and contrasts their performance to determine the set of features that best characterizes the musical style of a given music score. In this regard, we propose a novel feature extraction tool, named musif, and evaluate its efficacy on various repertoires and file formats, including MIDI, MusicXML, and **kern. Musif approximates existing tools such as jSymbolic and music21 in terms of computational efficiency while attempting to enhance the usability for custom feature development. The proposed tool also enhances classification accuracy when combined with other sets of features. We demonstrate the contribution of each set of features and the computational resources they require. Our findings indicate that the optimal tool for feature extraction is a combination of the best features from each tool rather than those of a single one. To facilitate future research in music information retrieval, we release the source code of the tool and benchmarks.
dc.description.departmentDepto. de Musicología
dc.description.facultyInstituto Complutense de Ciencias Musicales (ICCMU)
dc.description.facultyFac. de Geografía e Historia
dc.description.refereedTRUE
dc.description.sponsorshipEuropean Research Council
dc.description.statuspub
dc.identifier.citationOptimizing feature straction for Symbolic Music / Fedrico Simonetta, Ana Llorens, Martín Serrano, Eduardo García-Portugué, Álvaro Torrente en : International Society for Music Information Retrieval. (2023). Proceedings of the 24th conference of the International Society for Music Information Retrieval, November 5-9, 2023, Milan, Italy (A. Sarti, Ed.). International Society for Music Information Retrieval.
dc.identifier.isbn978-1-7327299-3-3
dc.identifier.officialurlhttps://ismir2023.ismir.net
dc.identifier.urihttps://hdl.handle.net/20.500.14352/114330
dc.language.isoeng
dc.page.final809
dc.page.initial802
dc.page.total8
dc.publisherInternational Society for Music Information Retrieval
dc.relation.projectIDDidone: The Sources of Absolute Music (ERC Advanced Grant No. 788976)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu782.1
dc.subject.cdu78
dc.subject.keywordcomputational musicology
dc.subject.keywordmusic information retrieval
dc.subject.ucmMúsica
dc.subject.unesco6203.06 Música, Musicología
dc.subject.unesco1203.17 Informática
dc.titleOptimizing feature straction for Symbolic Music
dc.typebook part
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublication08ceb7d9-40b9-4249-bafc-81c973dd36fb
relation.isAuthorOfPublicationbbb0db02-00f7-4f13-afd6-ef648eec77e6
relation.isAuthorOfPublication.latestForDiscovery08ceb7d9-40b9-4249-bafc-81c973dd36fb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2023_ISMIR.pdf
Size:
371.14 KB
Format:
Adobe Portable Document Format