Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Invariant subspaces for positive operators on Banach spaces with unconditional basis

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Gallardo Gutiérrez, E. A., González Doña, J. & Tradecete Pérez, P. Invariant subspaces for positive operators on Banach spaces with unconditional basis. 16 de febrero de 2022. Proceedings of the American Mathematical Society, https://doi.org/10.1090/proc/16026.

Abstract

We prove that every lattice homomorphism acting on a Banach space X with the lattice structure given by an unconditional basis has a non-trivial closed invariant subspace. In fact, it has a non-trivial closed invariant ideal, which is no longer true for every positive operator on such a space. Motivated by these examples, we characterize tridiagonal positive operators without non-trivial closed invariant ideals on X extending to this context a result of Grivaux on the existence of non-trivial closed invariant subspaces for tridiagonal operators.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections