Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Solving the chaos model-data paradox in the cryptocurrency market

dc.contributor.authorPietrych, Lukasz
dc.contributor.authorSandubete Galán, Julio Emilio
dc.contributor.authorEscot Mangas, Lorenzo
dc.date.accessioned2024-02-06T16:54:54Z
dc.date.available2024-02-06T16:54:54Z
dc.date.issued2021
dc.description.abstractIn this paper we test for nonlinearity and chaos in some cryptocurrencies returns and volatility. Financial markets are characterized by the so-called chaos model-data paradox, that is, it is relatively easy to design theoretical dynamic financial models that behave chaotically, but it is hard to find robust evidence of this kind of chaotic behaviour in real dataset. In fact, this paradox has been taken as an evidence that support the Efficient Market Hypothesis (EMH). In this paper we apply new robust computational methods based on statistical procedures to reconstruct the underlying attractor and to estimate the Lyapunov exponents based on the Jacobian neural nets. We have tested nonlinearity and chaos in some digital cryptocurrencies (Bitcoin, Ethereum, Ripple and Litecoin). The results show strong evidence against EMH supporting the hypothesis that those time series come from an underlying unknown generating process that behave nonlinear and chaotically. This fact points out that a potential explication to the chaos model-data paradox lies in the methods traditionally used in the literature which are not robust and do not have the capability to find chaos in financial time-series data.en
dc.description.departmentDepto. de Economía Aplicada, Pública y Política
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (España)
dc.description.sponsorshipWarsaw University
dc.description.statuspub
dc.identifier.citationPietrych, L.; Sandubete, J.E.; Escot, L. “Solving the chaos model-data paradox in the cryptocurrency market” Communications in Nonlinear Science and Numerical Simulation, vol 102 (nov 2021), num 105901, https://doi.org/10.1016/j.cnsns.2021.105901
dc.identifier.doi10.1016/j.cnsns.2021.105901
dc.identifier.issn1007-5704
dc.identifier.officialurlhttps://doi.org/10.1016/j.cnsns.2021.105901
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/abs/pii/S1007570421002136
dc.identifier.urihttps://hdl.handle.net/20.500.14352/99653
dc.issue.number102
dc.journal.titleCommunications in Nonlinear Science and Numerical Simulation
dc.language.isoeng
dc.page.final14
dc.page.initial1
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094901-B-I00/ES/EQUIPARACION GRADUAL DEL PERMISO DE PATERNIDAD CON EL DE MATERNIDAD EN ESPAÑA: EVALUACION, SESGOS, PERSPECTIVAS Y POLITICAS DE IGUALDAD/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsrestricted access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu330.43
dc.subject.jelC32
dc.subject.jelG15
dc.subject.keywordChaos model-data paradox
dc.subject.keywordNonlinearity tests
dc.subject.keywordLyapunov exponents
dc.subject.keywordLyapunov exponents Direct and Jacobian indirect methods
dc.subject.keywordCryptocurrency time series
dc.subject.ucmEconometría (Estadística)
dc.subject.ucmEconomía financiera
dc.subject.ucmEstadística aplicada
dc.subject.ucmEconometría (Economía)
dc.subject.ucmMercados bursátiles y financieros
dc.subject.unesco1209.15 Series Temporales
dc.subject.unesco1209.03 Análisis de Datos
dc.subject.unesco5302.05 Series Cronológicas Económicas
dc.subject.unesco5302 Econometría
dc.subject.unesco5307.16 Teoría Monetaria
dc.titleSolving the chaos model-data paradox in the cryptocurrency marketen
dc.typejournal article
dc.type.hasVersionVoR
dspace.entity.typePublication
relation.isAuthorOfPublicationa4bfb8a7-dbac-4c38-984d-f379456e9cf8
relation.isAuthorOfPublicationd7f5bd78-98f7-44ac-b4b5-df58a4ed3f84
relation.isAuthorOfPublication.latestForDiscoverya4bfb8a7-dbac-4c38-984d-f379456e9cf8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chaos_model-data_paradox.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format

Collections