Density functional theory analysis of dichloromethane and hydrogen interaction with Pd clusters: first step to simulate catalytic hydrodechlorination

dc.contributor.authorSalama Omar
dc.contributor.authorJose Palomar
dc.contributor.authorLuisa M. Gómez-Sainero
dc.contributor.authorMaria A. Álvarez-Montero
dc.contributor.authorMartín Martínez, María
dc.contributor.authorJuan J. Rodriguez
dc.date.accessioned2024-02-01T08:58:27Z
dc.date.available2024-02-01T08:58:27Z
dc.date.issued2011-06-30
dc.descriptionWe are grateful to the Spanish “Ministerio de Ciencia e Innovación” and “Comunidad de Madrid” forfinancial support(CTQ2008-04751, CTQ2008-05641, and S2009/PPQ-1545).We are also very grateful to“Centro de Computaci on Científicade la Universidad Aut onoma de Madrid”for computationalfacilities.
dc.description.abstractA density functional theory (DFT) analysis has been conducted for the gas-phase hydrodechlorination (HDC) of dichloromethane (DCM) with palladium catalyst to achieve a better knowledge of the reaction mechanism involved in the HDC process, which constitutes an emerging technology for the treatment of organochlorinated contaminants. The computational study included the effect of size, oxidation state, and spin configuration of Pd cluster on the adsorption of H2 and DCM reactants on the catalyst surface. Calculations described the activation of H2 by Pd clusters through a dissociative adsorption with low enthalpy values. In addition, partially and fully dissociated DCM intermediates on Pd surface were predicted by DFT calculations. Remarkably, the dissociative adsorption of DCM on Pd active sites occurs via the scission of C–Cl bonds, promoted by the formation of C–Pd linkages, implying high adsorption enthalpy. The computational results showed that DCM can be also molecularly adsorbed on both zerovalent and electrodeficient Pd species. However, the nondissociative adsorption of DCM over electrodeficient Pd cluster is remarkably favored in energy, with adsorption enthalpies (∼−50 kcal/mol) corresponding to chemisorption. Current theoretical evidence explained the deactivation of Pd/AC catalyst as a consequence of the selective poisoning of electrodeficient Pd active centers by chlorinated hydrocarbons, in good agreement with our previous experimental findings.
dc.description.departmentDepto. de Ingeniería Química y de Materiales
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.identifier.citationOmar, S., Palomar, J., Gomez-Sainero, L. M., Alvarez-Montero, M. A., Martin-Martinez, M., & Rodriguez, J. J. (2011). Density functional theory analysis of dichloromethane and hydrogen interaction with Pd clusters: first step to simulate catalytic hydrodechlorination. The Journal of Physical Chemistry C, 115(29), 14180-14192.
dc.identifier.doi10.1021/jp200329j
dc.identifier.essn1932-7455
dc.identifier.issn1932-7447
dc.identifier.officialurlhttps://pubs.acs.org/doi/10.1021/jp200329j
dc.identifier.urihttps://hdl.handle.net/20.500.14352/97488
dc.issue.number29
dc.journal.titleThe Journal of Physical Chemistry C
dc.language.isoeng
dc.page.final14192
dc.page.initial14180
dc.publisherAmerican Chemical Society
dc.relation.projectIDCTQ2008-04751
dc.relation.projectIDCTQ2008-05641
dc.relation.projectIDS2009/PPQ-1545
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu66.0
dc.subject.cdu620
dc.subject.ucmIngeniería química
dc.subject.unesco3303.01 Tecnología de la Catálisis
dc.titleDensity functional theory analysis of dichloromethane and hydrogen interaction with Pd clusters: first step to simulate catalytic hydrodechlorination
dc.typejournal article
dc.type.hasVersionNA
dc.volume.number115
dspace.entity.typePublication
relation.isAuthorOfPublication4843ea93-2d0c-4160-9d4a-6df323db4323
relation.isAuthorOfPublication.latestForDiscovery4843ea93-2d0c-4160-9d4a-6df323db4323
Download
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2011_JPhisChemC.pdf
Size:
752.43 KB
Format:
Adobe Portable Document Format
Collections