Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional. Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Parallel architectures to improve a GA based real-time system for trading the stock market

dc.contributor.advisorHidalgo Pérez, José Ignacio
dc.contributor.advisorNúñez-Letamendia, Laura
dc.contributor.authorContreras Fernández-Dávila, Iván
dc.date.accessioned2023-06-20T06:10:32Z
dc.date.available2023-06-20T06:10:32Z
dc.date.issued2011
dc.descriptionMáster en Investigación en Informática, Facultad de Informática, Departamento de Arquitectura de Computadores y Automática, curso 2010-2011
dc.description.abstractLa investigación y el desarrollo de sistemas de trading son cada vez más frecuentes ya que pueden alcanzar un alto potencial en la predicción de los movimientos bursatiles. El uso de estos sistemas permite manejar una enorme cantidad de datos relacionados con factores que afectan directamente al rendimiento de las inversiones (variables macroeconómicas, información de las compañías, indicadores industriales, variables de mercado, etc.), además evita las reacciones psicológicas asociadas a la inversión en los mercados nancieros. Los movimientos de los mercados bursátiles son continuos a lo largo de cada día, lo que reclama que los sistemas de trading deban ser apoyados por motores de analisis muy potentes, ya que la cantidad de datos necesarios para hacer frente a unas buenas predicciones crece, mientras que el tiempo de respuesta se acorta. Numerosos estudios documentan el uso de algoritmos genéticos (AG) como eje principal de los sistemas de trading. Los resultados experimentales proporcionados en este documento muestran diferentes formás de combinar el uso de AG y sistemas de paralelización. La paralelización mediantes las técnicas propuestas proporcionan una cuantiosa aceleración en la potencia y la capacidad de búsqueda de los AG para este tipo de aplicaciones nancieras. Por otra parte, el analisis previo a la paralelización nos permite implementar mejoras para las anteriores aproximaciones de AG. Respecto a los resultados de inversión, se pueden demostrar un 870% de ganancias para el S&P 500 en un plazo de 10 años (1996-2006), cuando la ganancia media del índice S&P 500 en el mismo período fue de 273%. [ABSTRACT] Research and development of trading systems are becoming more frequent as they can reach a high potential in the prediction of market movements. The use of these systems allows to manage a huge amount of data related to the factors affecting investments performance (macroeconomic variables, company information, industrial indicators, market variables, etc.) while avoids the psychological reactions of traders when they invest in financial markets. The movements in the stock markets are continuous throughout each day, which requires that trading systems should be supported by very powerful engines, since the amount of data to deal with grows while the respond time required to support trades gets shorter. Numerous studies document the use of genetic algorithms (GA) as the engine driving mechanical trading systems. The experimental results provided in this paper show different ways of combining the use of AG and parallelization systems. Parallelization using the proposed techniques provide a substantial acceleration in the power and capacity of the GA search for this type of nancial applications. Moreover, a previous analysis of the paralellization allows us to implement improvements to the previous approaches AG. With regard to investment results, we demonstrate a 870% of earnings for the S&P 500 over a period of 10 years (1996-2006), when the average gain in the S&P 500 over the same period was 273%.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/13056
dc.identifier.urihttps://hdl.handle.net/20.500.14352/46298
dc.language.isoeng
dc.page.total92
dc.rightsAtribución-NoComercial 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/es/
dc.subject.cdu004.42(043.3)
dc.subject.cdu004:336.76(043.3)
dc.subject.cdu336.76:004(043.3)
dc.subject.keywordBoinc
dc.subject.keywordComputación distribuida
dc.subject.keywordSistema de trading
dc.subject.keywordAlgoritmo genético
dc.subject.keywordJacket
dc.subject.keywordGPU
dc.subject.keywordGrid computing
dc.subject.keywordTrading system
dc.subject.keywordGenetic algorithm.
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmMercados bursátiles y financieros
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleParallel architectures to improve a GA based real-time system for trading the stock market
dc.typemaster thesis
dspace.entity.typePublication
relation.isAdvisorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAdvisorOfPublication.latestForDiscovery981f825f-2880-449a-bcfc-686b866206d0

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
principal.pdf
Size:
3.94 MB
Format:
Adobe Portable Document Format