Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Effects of fire history on animal communities: a systematic review

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Open
Citations
Google Scholar

Citation

González, T. M., González-Trujillo, J. D., Muñoz, A., & Armenteras, D. (2022). Effects of fire history on animal communities: a systematic review. Ecological Processes, 11(1). https://doi.org/10.1186/s13717-021-00357-7

Abstract

Fire is a natural agent with a paramount role in ecosystem functioning and biodiversity maintenance. Still, it can also act as a negative force against many ecosystems. Despite some knowledge of the interactions of fire and vegetation, there is no clear understanding of how different components of fire regimes (i.e., severity, history, or frequency) influence known patterns of animal communities. Therefore, we performed a systematic review on the global responses of arthropods, birds, mammals, reptiles, and amphibians to different fire regimes. Specifically, we focused on assessing how fire severity, history, and frequency modulate the effect of fire on the richness and abundance of faunal communities. We conducted a systematic review of 566 papers retrieved from the Scopus database. We also scrutinized all the documents included in the meta-analysis of Pastro et al. (Pastro et al. Glob Ecol Biogeogr 23:1146–1156, 2014). Our selection criteria excluded studies without data on species richness or abundance. We also excluded studies without adequate controls and those without information about the fire regime of the study zone. After careful examination, we used data from 162 studies to perform a quantitative meta-analysis. From the 162 studies meeting our selection criteria, nearly 60% of the studies are from North America, 25% from Australia, 11% from Europe, and 4% from the tropics. According to the ecological role of fire, 90% of the studies were carried out in fire-dependent ecosystems (i.e., conifer forests, natural savannas, pastures). Finally, 40% of the studies analyzed birds, 22% mammals, and 20% arthropods. The meta-analysis of the available evidence indicates that fire history is an important modulator of animal richness and abundance. Whether negative or positive, animal responses depended on the time since the last fire event. Considering that short-term studies may not capture such a long-term effect on fauna, this translates to more challenges at implementing fire management strategies. Whether or not we can anticipate the impact of the fire will then depend on future efforts to implement long-term research.

Research Projects

Organizational Units

Journal Issue

Description

Funding text 1: We thank Gabriela Cordoba and Francisco Luque for their collaboration throughout the selection and review process. In addition, we are incredibly grateful to Dr. Ralph Grundel of the U.S. Geological Survey and Dr. Philip Barton of The Australian National University for facilitating their detailed data and extra information. We also thank Thomas Richard Defler for the revision of the manuscript. Finally, we wish to thank the reviewers for their comments and suggestions that significantly improved the manuscript. Funding text 2: TMG was funded by Colciencias 757 National Doctorate Scholarship, Universidad Nacional de Colombia through the Convocatoria Nacional para el Apoyo a Proyectos de Investigación y Creación Artística 2017–2018, the American Society of Mammalogists through the Latin American student field grant 2017, The Rufford Foundation—Small Grant, and L'Oréal-UNESCO for Women in Science Colombia 2018 scholarship. Referencias bibliográficas: • Adeney JM, Ginsberg JR, Russell GJ, Kinnaird MF (2006) Effects of an ENSO-related fire on birds of a lowland tropical forest in Sumatra. Anim Conserv 9:292–301. 10.1111/j.1469-1795.2006.00035.x DOI: 10.1111/j.1469-1795.2006.00035.x • Allen JC, Krieger SM, Walters JR, Collazo JA (2006) Associations of breeding birds with fire-influenced and riparian-upland gradients in a longleaf pine ecosystem. Auk 123:1110–1128. 10.2307/25150224 DOI: 10.2307/25150224 • Antunes SC, Curado N, Castro BB, Gonçalves F (2009) Short-term recovery of soil functional parameters and edaphic macro-arthropod community after a forest fire. J Soils Sediments 9:267–278. 10.1007/s11368-009-0076-y DOI: 10.1007/s11368-009-0076-y • Aragão LEOC, Malhi Y, Barbier N et al (2008) Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos Trans R Soc B Biol Sci 363:1779–1785 DOI: 10.1098/rstb.2007.0026 • Aragão LEOC, Anderson LO, Fonseca MG et al (2018) 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun 9:536. 10.1038/s41467-017-02771-y DOI: 10.1038/s41467-017-02771-y • Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA (2013) Defining pyromes and global syndromes of fire regimes. Proc Natl Acad Sci 110:6442–6447. 10.1073/pnas.1211466110 DOI: 10.1073/pnas.1211466110 • Armenteras D, Retana J (2012) Dynamics, patterns and causes of fires in northwestern amazonia. PLoS ONE 7:e35288. 10.1371/journal.pone.0035288 DOI: 10.1371/journal.pone.0035288 • Bateman HL, O’Connell MA (2006) Effects of prescribed burns on wintering cavity-nesting birds. Northwest Sci 80:283–291 • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. 10.18637/jss.v067.i01 DOI: 10.18637/jss.v067.i01 • Benson TJ, Dinsmore JJ, Hohman WL (2011) Short-term effects of burning and disking on songbird use of floodplain conservation easements. Am Midl Nat 165:257–273. 10.1674/0003-0031-165.2.257 DOI: 10.1674/0003-0031-165.2.257 • Bess EC, Parmenter RR, McCoy S, Molles MC (2002) Responses of a riparian forest-floor arthropod community to wildfire in the Middle Rio Grande Valley, New Mexico. Environ Entomol 31:774–784. 10.1603/0046-225x-31.5.774 DOI: 10.1603/0046-225x-31.5.774 • Blake JG (2005) Effects of prescribed burning on distribution and abundance of birds in a closed-canopy oak-dominated forest, Missouri, USA. Biol Conserv 121:519–531. 10.1016/j.biocon.2004.06.021 DOI: 10.1016/j.biocon.2004.06.021 • Brehme CS, Clark DR, Rochester CJ, Fisher RN (2011) Wildfires alter rodent community structure across four vegetation types in Southern California, USA. Fire Ecol 7:81–98. 10.4996/fireecology.0702081 DOI: 10.4996/fireecology.0702081 • Brennan EK, Smith’ LM, Haukos DA, LaGrange TG (2005) Short-term response of wetland birds to prescribed burning in Rainwater Basin wetlands. Wetlands 25:667–674. 10.1672/0277-5212(2005)025[0667:SROWBT]2.0.CO;2 DOI: 10.1672/0277-5212(2005)025[0667:SROWBT]2.0.CO;2 • Briani DC, Palma ART, Vieira EM, Henriques RPB (2004) Post-fire succession of small mammals in the Cerrado of central Brazil. Biodivers Conserv 13:1023–1037. 10.1023/B:BIOC.0000014467.27138.0b DOI: 10.1023/B:BIOC.0000014467.27138.0b • Brotons L, Herrando S, Pons P (2008) Wildfires and the expansion of threatened farmland birds: the ortolan bunting Emberiza hortulana in Mediterranean landscapes. J Appl Ecol 45:1059–1066. 10.1111/j.1365-2664.2008.01467.x DOI: 10.1111/j.1365-2664.2008.01467.x • Chao A, Chiu C-H (2016) Species richness: estimation and comparison. In: Balakrishnan N, Colton T, Everitt B, Piegorsch WW, Ruggeri F, Teugels JL (eds) Wiley statsref: statistics reference online. Wiley, Hoboken, pp 1–26 • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547. 10.1890/11-1952.1 DOI: 10.1890/11-1952.1 • Chia EK, Bassett M, Nimmo DG et al (2015) Fire severity and fire-induced landscape heterogeneity affect arboreal mammals in fire-prone forests. Ecosphere 6:art190. 10.1890/ES15-00327.1 DOI: 10.1890/ES15-00327.1 • Chia EK, Bassett M, Leonard SWJ et al (2016) Effects of the fire regime on mammal occurrence after wildfire: Site effects vs landscape context in fire-prone forests. For Ecol Manage 363:130–139. 10.1016/j.foreco.2015.12.008 DOI: 10.1016/j.foreco.2015.12.008 • Choi CY, Lee EJ, Nam HY et al (2014) Temporal changes in the breeding bird community caused by post-fire treatments after the Samcheok forest fire in Korea. Landsc Ecol Eng 10:203–214. 10.1007/s11355-012-0203-6 DOI: 10.1007/s11355-012-0203-6 • Christie AP, Amano T, Martin PA et al (2019) Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J Appl Ecol 56:2742–2754. 10.1111/1365-2664.13499 DOI: 10.1111/1365-2664.13499 • Cochrane MA (ed) (2009) Tropical fire ecology. Climate change, land use, and ecosystem dynamics. Springer, Berlin • Čuchta P, Miklisová D, Kováč Ľ (2012) Changes within collembolan communities in windthrown European montane spruce forests 2 years after disturbance by fire. Ann For Sci 69:81–92. 10.1007/s13595-011-0114-y DOI: 10.1007/s13595-011-0114-y • De Palma A, Sanchez-Ortiz K, Martin PA et al (2018) Challenges with inferring how land-use affects terrestrial biodiversity: study design, time, space and synthesis. In: Bohan DA, Dumbrell AJ, Woodward G, Jackson MBT (eds) Next generation biomonitoring: part 1. Academic Press, Boca Raton, pp 163–199 DOI: 10.1016/bs.aecr.2017.12.004 • Ding T, Liao H, Yuan H (2008) Breeding bird community composition in different successional vegetation in the montane coniferous forests zone of Taiwan. For Ecol Manage 255:2038–2048. 10.1016/j.foreco.2008.01.056 DOI: 10.1016/j.foreco.2008.01.056 • Doherty TS, van Etten EJB, Davis RA et al (2016) Ecosystem responses to fire: identifying cross-taxa contrasts and complementarities to inform management strategies. Ecosystems 20:872–884. 10.1007/s10021-016-0082-z DOI: 10.1007/s10021-016-0082-z • Eby SL, Anderson TM, Mayemba EP, Ritchie ME (2014) The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics. J Anim Ecol 83:1196–1205. 10.1111/1365-2656.12221 DOI: 10.1111/1365-2656.12221 • Fattorini S (2010) Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Biodivers Conserv 19:1237–1250. 10.1007/s10531-009-9749-5 DOI: 10.1007/s10531-009-9749-5 • Fontaine JB, Donato DC, Robinson WD et al (2009) Bird communities following high-severity fire: response to single and repeat fires in a mixed-evergreen forest, Oregon, USA. For Ecol Manage 257:1496–1504. 10.1016/j.foreco.2008.12.030 DOI: 10.1016/j.foreco.2008.12.030 • Fordyce A, Hradsky BA, Ritchie EG, Di Stefano J (2016) Fire affects microhabitat selection, movement patterns, and body condition of an Australian rodent (Rattus fuscipes). J Mammal 97:102–111. 10.1093/jmammal/gyv159 DOI: 10.1093/jmammal/gyv159 • Fox BJ (1982) Fire and mammalian secondary succession in an Australian coastal heath. Ecology 63:1332–1341. 10.2307/1938861 DOI: 10.2307/1938861 • González TM, González-Trujillo JD, Muñoz A, Armenteras D (2021) Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspect Ecol Conserv 19:179–188. 10.1016/j.pecon.2021.03.005 DOI: 10.1016/j.pecon.2021.03.005 • Green DS, Roloff GJ, Heath BR, Holekamp KE (2015) Temporal dynamics of the reponses by African mammals to prescribed fire. J Wildl Manage 79:235–242. 10.1002/jwmg.827 DOI: 10.1002/jwmg.827 • Haney A, Apfelbaum S, Burris JM (2008) Thirty years of post-fire succession in a southern boreal forest bird community. Am Midl Nat 159:421–433. 10.1674/0003-0031(2008)159[421:tyopsi]2.0.co;2 DOI: 10.1674/0003-0031(2008)159[421:tyopsi]2.0.co;2 • Henriques RPB, Briani DC, Palma ART, Vieira EM (2006) A simple graphical model of small mammal succession after fire in the Brazilian cerrado. Mammalia 70:226–230. 10.1515/MAMM.2006.044 DOI: 10.1515/MAMM.2006.044 • Herrando S, Brotons L (2002) Forest bird diversity in Mediterranean areas affected by wildfires: a multi-scale approach. Ecography 25:161–172. 10.1034/j.1600-0587.2002.250204.x DOI: 10.1034/j.1600-0587.2002.250204.x • Kelly LT, Nimmo DC, Spence-Bailey LM et al (2010) The short-term responses of small mammals to wildfire in semiarid mallee shrubland, Australia. Wildl Res 37:293–300. 10.1071/WR10016 DOI: 10.1071/WR10016 • Kelly LT, Nimmo DG, Spence-Bailey LM et al (2011) Influence of fire history on small mammal distributions: insights from a 100-year post-fire chronosequence. Divers Distrib 17:462–473. 10.1111/j.1472-4642.2011.00754.x DOI: 10.1111/j.1472-4642.2011.00754.x • Kelly LT, Nimmo DG, Spence-Bailey LM et al (2012) Managing fire mosaics for small mammal conservation: a landscape perspective. J Appl Ecol 49:412–421. 10.1111/j.1365-2664.2012.02124.x DOI: 10.1111/j.1365-2664.2012.02124.x • Leahy L, Legge SM, Tuft K et al (2015) Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl Res 42:705–716. 10.1071/WR15011 DOI: 10.1071/WR15011 • Letnic M, Tischler M, Gordon C (2013) Desert small mammal responses to wildfire and predation in the aftermath of a La Nińa driven resource pulse. Austral Ecol 38:841–849. 10.1111/aec.12063 DOI: 10.1111/aec.12063 • Litt AR, Steidl RJ (2011) Interactive effects of fire and nonnative plants on small mammals in grasslands. Wildl Monogr 176:1–31. 10.1002/wmon.2 DOI: 10.1002/wmon.2 • Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. 10.1371/journal.pmed.1000097 DOI: 10.1371/journal.pmed.1000097 • Monadjem A, Perrin M (2003) Population fluctuations and community structure of small mammals in a Swaziland grassland over a three-year period. Afr Zool 38:127–137. 10.1080/15627020.2003.11657200 DOI: 10.1080/15627020.2003.11657200 • Moretti M, Duelli P, Obrist MK (2006) Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149:312–327. 10.1007/s00442-006-0450-z DOI: 10.1007/s00442-006-0450-z • Mowat EJ, Webb JK, Crowther MS (2015) Fire-mediated niche-separation between two sympatric small mammal species. Austral Ecol 40:50–59. 10.1111/aec.12166 DOI: 10.1111/aec.12166 • Osenberg CW, Bolker BM, White JSS et al (2006) Statistical issues and study design in ecological restorations: Lessons learned from marine reserves. In: Falk AD, Palmer MA, Zedler JB (eds) Foundations of restoration ecology. Island Press, Washington DC, pp 280–302 • Pastro LA, Dickman CR, Letnic M (2014) Fire type and hemisphere determine the effects of fire on the alpha and beta diversity of vertebrates: a global meta-analysis. Glob Ecol Biogeogr 23:1146–1156. 10.1111/geb.12195 DOI: 10.1111/geb.12195 • Pausas JG (2019) Generalized fire response strategies in plants and animals. Oikos 128:147–153. 10.1111/oik.05907 DOI: 10.1111/oik.05907 • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601. 10.1525/bio.2009.59.7.10 DOI: 10.1525/bio.2009.59.7.10 • Peres CA (1999) Ground fires as agents of mortality in a Central Amazonian forest. J Trop Ecol 15:535–541. 10.1017/S0266467499000991 DOI: 10.1017/S0266467499000991 • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, San Diego • Plavsic MJ (2011) Quantifying disturbance resistance in an ecologically dominant species: a robust design analysis. Oecologia 166:923–934. 10.1007/s00442-011-1925-0 DOI: 10.1007/s00442-011-1925-0 • Plavsic MJ (2014) Proximate and ultimate drivers of small-mammal recolonization after fire: microhabitat conditions, rainfall and species traits. Anim Conserv 17:573–582. 10.1111/acv.12124 DOI: 10.1111/acv.12124 • R Core Team (2020) R 3.6.1. A language and environment for statistical computing • Roberts SL, van Wagtendonk JW, Miles AK, Kelt DA (2011) Effects of fire on spotted owl site occupancy in a late-successional forest. Biol Conserv 144:610–619. 10.1016/j.biocon.2010.11.002 DOI: 10.1016/j.biocon.2010.11.002 • Roberts SL, Kelt DA, Van Wagtendonk JW et al (2015) Effects of fire on small mammal communities in frequent-fire forests in California. J Mammal 96:107–119. 10.1093/jmammal/gyu011 DOI: 10.1093/jmammal/gyu011 • Rosenberg DM, McCully P, Pringle CM (2000) Global-scale environmental effects of hydrological alterations: introduction. Bioscience 50:746–751. 10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2 DOI: 10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2 • Russell-Smith J, Monagle C, Jacobsohn M et al (2017) Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fire-prone settings? Clim Change 140:47–61. 10.1007/s10584-013-0910-5 DOI: 10.1007/s10584-013-0910-5 • Salo P, Banks PB, Dickman CR, Korpimäki E (2010) Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey. Ecol Monogr 80:531–546. 10.1890/09-1260.1 DOI: 10.1890/09-1260.1 • Santos X, Mateos E, Bros V et al (2014) Is response to fire influenced by dietary specialization and mobility? A comparative study with multiple animal assemblages. PLoS ONE 9:e88224 DOI: 10.1371/journal.pone.0088224 • Sasal Y, Raffaele E, Farji-Brener AG (2015) Consequences of fire and cattle browsing on ground beetles (Coleoptera) in NW Patagonia. Ecol Res 30:1015–1023. 10.1007/s11284-015-1302-2 DOI: 10.1007/s11284-015-1302-2 • Shea K, Roxburgh SH, Rauschert ESJ (2004) Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecol Lett 7:491–508. 10.1111/j.1461-0248.2004.00600.x DOI: 10.1111/j.1461-0248.2004.00600.x • Shlisky A, Alencar AAC, Nolasco MM, Curran LM (2009) Overview: Global fire regime conditions, threats, and opportunities for fire management in the tropics. In: Tropical Fire Ecology. Springer Praxis Books. Springer, Berlin, pp 65–83 DOI: 10.1007/978-3-540-77381-8_3 • Shlisky A, Waugh J, Gonzalez P, et al (2007) Fire, ecosystems and people: Threats and strategies for global biodiversity conservation 1. Global Fire Initiative Technical Report 2007–2. The Nature Conservancy, Arlington, VA • Sutherland EF, Dickman CR (1999) Mechanisms of recovery after fire by rodents in the Australian environment: a review. Wildl Res 26:405–419. 10.1071/WR97045 DOI: 10.1071/WR97045 • Ukmar E, Battisti C, Luiselli L, Bologna MA (2007) The effects of fire on communities, guilds and species of breeding birds in burnt and control pinewoods in central Italy. Biodivers Conserv 16:3287–3300. 10.1007/s10531-006-9126-6 DOI: 10.1007/s10531-006-9126-6 • Vieira EM, Briani DC (2013) Short-term effects of fire on small rodents in the Brazilian Cerrado and their relation with feeding habits. Int J Wildl Fire 22:1063–1071 DOI: 10.1071/WF12153

Keywords

Collections