Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Fibrations on Banach manifolds

dc.contributor.authorGutú, Olivia
dc.contributor.authorJaramillo Aguado, Jesús Ángel
dc.date.accessioned2023-06-20T09:39:34Z
dc.date.available2023-06-20T09:39:34Z
dc.date.issued2004-06
dc.description.abstractLet f be a split submersion between paracompact Banach manifolds. We obtain here various conditions for f to be a fiber bundle. First, we give general conditions in terms of path-liftings. As a consequence, we deduce several criteria: For example, f is a fiber bundle provided it satisfies either some topological requirements ( such as being a proper or a closed map) or, in the case of Finsler manifolds, some metric requirements (such as Hadamard integral condition).
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCONACyT (México)
dc.description.sponsorshipDGES (Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16634
dc.identifier.doi10.2140/pjm.2004.215.313
dc.identifier.issn0030-8730
dc.identifier.officialurlhttps://msp.org/pjm/2004/215-2/p05.xhtml
dc.identifier.relatedurlhttp://projecteuclid.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50130
dc.issue.number2
dc.journal.titlePacific Journal of Mathematics
dc.language.isoeng
dc.page.final329
dc.page.initial313
dc.publisherPacific Journal of Mathematics
dc.relation.projectIDGrant 119933
dc.relation.projectIDBFM2000-0609
dc.rights.accessRightsrestricted access
dc.subject.cdu515.16
dc.subject.keywordFiber bundle
dc.subject.keywordBanach manifold
dc.subject.keywordpath-lifting
dc.subject.keywordFinsler space
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleFibrations on Banach manifolds
dc.typejournal article
dc.volume.number215
dcterms.referencesR. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Applications, Applied Mathematical Sciences, 75, Springer-Verlag, 1988, MR 0960687 (89f:58001), Zbl 0875.58002. M.S. Berger and R.A. Plastock, On the singularities of nonlinear Fredholm operators of positive index, Proc. Amer. Math. Soc., 79(2) (1980), 373–380, MR 0565342 (81d:58011), Zbl 0444.47044. F.E. Browder, Covering spaces, fiber spaces and local homeomorphism, Duke Math. J., 21 (1954), 329–336, MR 0062431 (15,978a), Zbl 0056.16602. C.J. Earle and J. Eells, Foliations and fibrations, J. Differential Geom., 1 (1967), 61–69, MR 0215320 (35 #6161), Zbl 0162.54101. C. Ehresmann, Les connexions infinit´esimales dans un espace fibr´e diff´erentiable, Colloque de Topologie, Bruxelles, 1950, Georges Thone, Li`ege; Masson et Cie., Paris, 1951, 29–55, MR 0042768 (13,159e), Zbl 0054.07201. R. Engelking, General Topolgy, PWN Polish Scientific Publishers, Warszawa, 1977. O. Gut´u and J.A. Jaramillo, Global homeomorphisms and covering projections on metric spaces. Preprint. J. Hadamard, Sur les tranformations ponctuelles, Bull. Soc. Math. France, 34 (1906), 71–84. M.W. Hirsch, Differential Topology, Graduate Texts in Mathematics, 33, Springer- Verlag, 1976, MR 0448362 (56 #6669), Zbl 0356.57001. R.S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (1966), 115–132, MR 0259955 (41 #4584), Zbl 0143.35203. T. Parthasarathy, On Global Univalence Theorems, Lecture Notes in Mathematics, 977, Springer-Verlag, 1983, MR 0694845 (84m:26019), Zbl 0506.90001. R.A. Plastock, Homeomorphisms between Banach spaces, Trans. Amer. Math. Soc., 200 (1974), 169–183, MR 0356122 (50 #8593), Zbl 0291.54009. -----Nonlinear mappings that are globally equivalent to a projection, Trans. Amer. Math. Soc., 275(1) (1983), 373–380, MR 0678357 (84b:58017), Zbl 0525.47047. P.J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler Manifolds, Ann. of Math., 146 (1997), 647–691, MR 1491449 (98m:58020), Zbl 0919.58003. W.C. Rheinboldt, Local mapping relations and global implicit functions theorems, Trans. Amer. Math. Soc., 138 (1969), 183–198, MR 0240644 (39 #1990), Zbl 0175.45201. E.H. Spanier, Algebraic Topology, McGraw Hill, 1966, MR 0210112 (35 #1007), Zbl 0145.43303.
dspace.entity.typePublication
relation.isAuthorOfPublication8b6e753b-df15-44ff-8042-74de90b4e3e9
relation.isAuthorOfPublication.latestForDiscovery8b6e753b-df15-44ff-8042-74de90b4e3e9

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaramillo_21.pdf
Size:
285.92 KB
Format:
Adobe Portable Document Format

Collections