Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nanoscale anglesite growth on the celestite (001) face.

dc.contributor.authorPina Martínez, Carlos Manuel
dc.contributor.authorRico García, Aida
dc.date.accessioned2023-06-20T01:28:48Z
dc.date.available2023-06-20T01:28:48Z
dc.date.issued2009-09-01
dc.description.abstractIn situ atomic force microscopy (AFM) was used to study the growth behaviour of anglesite (PbSO4) monolayers on the celestite (001) face. Growth was promoted by exposing the celestite cleavage surfaces to aqueous solutions that were supersaturated with respect to anglesite. The solution supersaturation, βang, was varied from 1.05 to 3.09 (where βang = a(Pb2+)•a(SO42-)/Ksp,ang). In this range of supersaturation, two single anglesite monolayers (~3.5 Å in height each) from pre-existent celestite steps were grown. However, for solution supersaturation of the values of βang < 1.89 +- 0.06, subsequent multilayer growth is strongly inhibited. AFM observations indicate that the inhibition of a continuous layer-by-layer growth of anglesite on the celestite (001) face is due to the in-plane strain generated by the slight difference between the anglesite and celestite lattice parameters (i.e. the linear misfits are lower than 1.1%). The minimum supersaturation required to overcome the energy barrier for multilayer growth gave an estimate of the in-plane strain energy: 11.4 +/- 0.6 mJ/m2. Once this energy barrier is overcome, a multilayer Frank–van der Merwe epitaxial growth was observed.
dc.description.departmentDepto. de Mineralogía y Petrología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/9579
dc.identifier.doi10.1016/j.susc.2009.07.007
dc.identifier.issn0039-6028
dc.identifier.officialurlhttp://www.elsevier.com/wps/find/journaldescription.cws_home/505676/description#description
dc.identifier.relatedurlhttp://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235546%232009%23993969982%231448051%23FLA%23&_cdi=5546&_pubType=J&_auth=y&_acct=C000012038&_version=1&_urlVersion=0&_userid=144492&md5=fea0477e827859be4fef0a1485fb7189
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43641
dc.issue.number17
dc.journal.titleSurface science
dc.language.isoeng
dc.page.final2713
dc.page.initial2708
dc.publisherElsevier
dc.relation.projectIDProject No.CCG08-UCM/AMB-3795
dc.relation.projectIDGrant No. 910148-Superficies Minerales
dc.rights.accessRightsopen access
dc.subject.cdu549.76
dc.subject.cdu548.2
dc.subject.cdu539.2
dc.subject.keywordSurface topography
dc.subject.keywordAtomic force microscopy
dc.subject.keywordCrystal Growth Epitaxy
dc.subject.keywordAqueous solutions
dc.subject.keywordSolid–liquid interfaces
dc.subject.keywordCelestite
dc.subject.keywordAnglesite
dc.subject.ucmCristalografía (Geología)
dc.subject.ucmMineralogía (Geología)
dc.subject.unesco2506.11 Mineralogía
dc.titleNanoscale anglesite growth on the celestite (001) face.
dc.typejournal article
dc.volume.number603
dcterms.references[1] A.A. Chernov, Modern Crystallography III (Crystal Growth), Springer-Verlag, 1984. [2] A. Pimpinelli, J. Villain, Physics of Crystal Growth, Cambridge University Press, Cambridge, 1998. [3] M. Prieto, P. Cubillas, A. Fernández-González, Geochim. Cosmochim. Acta 67 (2003) 3859. [4] C. Pérez-Garrido, L. Fernández-Díaz, C.M. Pina, M. Prieto, Surf. Sci. 601 (2007) L 5499. [5] F.C. Frank, J. Van Der Merwe, Proc. Roy. Soc. A 198 (1949) 216. [6] M. Volmer, A. Weber, Z. Phys. Chem. 119 (1926) 277. [7] I.N. Stranski, V.L. Krastanov, Akad. Wiss. Lit. Mainz Math.- Natur. Kl. IIb 146 (1939) 797. [8] P.E. Hillner, A.J. Gratz, S. Manne, P.K. Hansma, Geology 20 (1992) 359. [9] C.M. Pina, U. Becker, P. Risthaus, D. Bosbach, A. Putnis, Nature 395 (1998) 483. [10] H.H. Teng, P.M. Dove, J.J. DeYoreo, Geochim. Cosmochim. Acta 64 (2000) 2255. [11] N. Sanchez-Pastor, C.M. Pina, J.M. Astilleros, L. Fernández-Díaz, A. Putnis, Surf. Sci. 581 (2005) L225. [12] A.G. Shtukenberg, J.M. Astilleros, A. Putnis, Surf. Sci. 590 (2005) L212. [13] K. Takahashi, M. Suzuki, M. Yoshimoto, H. Funakubo, Jpn. J. Appl. Phys. Part 2 – Lett. Express Lett. 45 (2006) L138. [14] S.R. Higgins, X. Hu, Geochim. Cosmochim. Acta 69 (2005) 2085. [15] J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, A. Putnis, Surf. Sci. 545 (2003) L773. [16] J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, A. Putnis, Geochim. Cosmochim. Acta 66 (2002) 3177. [17] J.M. Astilleros, C.M. Pina, L. Fernández-Díaz, A. Putnis, Chem. Geol. 193 (2003) 93. [18] D.L. Parkhurst, C.A.J. Appelo, User’s guide to PHREEQC (version 2). A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (US Geological Survey. Water-Resources Investigations Report 99-4259, 2000). p. 312. [19] P. Risthaus, D. Bosbach, U. Becker, A. Putnis, Physicochem. Eng. Aspects 191 (2001) 201. [20] A.E. Murdaugh, M. Liddelow, A.M. Schmidt, S. Manne, Langmuir 23 (2007) 5852. [21] J. Majzlan, A. Navrotsky, J.M. Neil, Geochim. Cosmochim. Acta 66 (2002) 1839. [22] M.A. Simonov, S.I. Troyanov, Vestn. Mosk. Uni. 4 (1987) 77. [23] C.M. Pina, A. Rico-García, Macla 9 (2008) 191 (in Spanish).
dspace.entity.typePublication
relation.isAuthorOfPublicationea4a455d-94c9-4139-ba99-fbc6fea3e899
relation.isAuthorOfPublication.latestForDiscoveryea4a455d-94c9-4139-ba99-fbc6fea3e899

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nanoscale_anglesite_growth_on_the_celestite_(001)_face_Pina_&_Rico_García_2009.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format

Collections